A database of 479 glass formulations used to immobilize radioactive wastes for facilities in a safe and resilient infrastructure was analyzed, searching for underlying statistical patterns and associated glass performance features. The analyzed data cover many oxides, including SiO2, B2O3, Na2O, Fe2O3, and some fluorides. Borosilicates were the most common glasses (60.1%), while silicates were only 11.9%. In addition to these two families, five radioactive waste vitrification matrices were identified: Boroaluminosilicates, iron phosphates, aluminosilicates, sodium iron phosphates, and boroaluminates, totaling seven glass families. Almost all compositions (97.7%) contained sodium oxide, followed by silica (91.4%), iron (82.7%), boron (73.7%), phosphorus (54.9%), and cesium oxides (26.1%). Multivariate exploratory methods were applied to analyze and classify glass compositions using hierarchical and non-hierarchical (K-means) clusters and principal component analysis. Four main clusters were observed, the largest comprising 417 formulations containing mainly silicates, borosilicates, aluminosilicates, and boroaluminosilicates; two principal components, representing 73.75% of all compositions, emerge from these four clusters derived from a covariance analysis. The principal components and four clusters may be associated with the following glass features in terms of glass compositions: liquidus temperature, glass transition temperature, density, resistivity, microhardness, and viscosity. Some general underlying properties emerged from our classification and are discussed.

Radioactive Waste Immobilization Using Vitreous Materials for Facilities in a Safe and Resilient Infrastructure Classified by Multivariate Exploratory Analyses

Ciolini R.;d'Errico F.
2022-01-01

Abstract

A database of 479 glass formulations used to immobilize radioactive wastes for facilities in a safe and resilient infrastructure was analyzed, searching for underlying statistical patterns and associated glass performance features. The analyzed data cover many oxides, including SiO2, B2O3, Na2O, Fe2O3, and some fluorides. Borosilicates were the most common glasses (60.1%), while silicates were only 11.9%. In addition to these two families, five radioactive waste vitrification matrices were identified: Boroaluminosilicates, iron phosphates, aluminosilicates, sodium iron phosphates, and boroaluminates, totaling seven glass families. Almost all compositions (97.7%) contained sodium oxide, followed by silica (91.4%), iron (82.7%), boron (73.7%), phosphorus (54.9%), and cesium oxides (26.1%). Multivariate exploratory methods were applied to analyze and classify glass compositions using hierarchical and non-hierarchical (K-means) clusters and principal component analysis. Four main clusters were observed, the largest comprising 417 formulations containing mainly silicates, borosilicates, aluminosilicates, and boroaluminosilicates; two principal components, representing 73.75% of all compositions, emerge from these four clusters derived from a covariance analysis. The principal components and four clusters may be associated with the following glass features in terms of glass compositions: liquidus temperature, glass transition temperature, density, resistivity, microhardness, and viscosity. Some general underlying properties emerged from our classification and are discussed.
2022
Nascimento, M. L. F.; Cassar, D. R.; Ciolini, R.; de Souza, S. O.; D'Errico, F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1160899
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact