The moduli space of stable surfaces with K^2=1 and \chi=3 has at least two irreducible components that contain surfaces with T-singularities. We show that the two known components intersect transversally in a divisor. Moreover, we exhibit other new boundary divisors and study how they intersect one another.

On T‐divisors and intersections in the moduli space of stable surfaces ℳ̅₁,₃

Franciosi, Marco;Pardini, Rita;
2023-01-01

Abstract

The moduli space of stable surfaces with K^2=1 and \chi=3 has at least two irreducible components that contain surfaces with T-singularities. We show that the two known components intersect transversally in a divisor. Moreover, we exhibit other new boundary divisors and study how they intersect one another.
2023
Coughlan, Stephen; Franciosi, Marco; Pardini, Rita; Rana, Julie; Rollenske, Sönke
File in questo prodotto:
File Dimensione Formato  
JLM-M 1 3.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 467.67 kB
Formato Adobe PDF
467.67 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1160926
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact