We consider a wide class of approximate models of evolution of singular distributions of vorticity in three dimensional incompressible fluids and we show that they have global smooth solutions. The proof exploits the existence of suitable Hamilto- nian functions. The approximate models we analyze (essentially discrete and continuous vortex filaments and vortex loops) are related to some problem of classical physics con- cerning turbulence and also to the numerical approximation of flows with very high Reynolds number. Finally, we apply our strategy to discrete models for filaments used in numerical methods.

On the global evolution of vortex filaments, blobs, and small loops in 3D ideal flows

BERSELLI, LUIGI CARLO;
2007

Abstract

We consider a wide class of approximate models of evolution of singular distributions of vorticity in three dimensional incompressible fluids and we show that they have global smooth solutions. The proof exploits the existence of suitable Hamilto- nian functions. The approximate models we analyze (essentially discrete and continuous vortex filaments and vortex loops) are related to some problem of classical physics con- cerning turbulence and also to the numerical approximation of flows with very high Reynolds number. Finally, we apply our strategy to discrete models for filaments used in numerical methods.
Berselli, LUIGI CARLO; Gubinelli, M.
File in questo prodotto:
File Dimensione Formato  
Arpi 116134.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 233.44 kB
Formato Adobe PDF
233.44 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/116134
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact