Transposable elements (TEs) are an important source of genome variability, playing many roles in the evolution of eukaryotic species. Besides well-known phenomena, TEs may undergo the exaptation process and generate the so-called exapted transposable element genes (ETEs). Here we present a genome-wide survey of ETEs in the large genome of sunflower (Helianthus annuus L.), in which the massive amount of TEs, provides a significant source for exaptation. A library of sunflower TEs was used to build TE-specific Hidden Markov Model profiles, to search for all available sunflower gene products. In doing so, 20,016 putative ETEs were identified and further investigated for the characteristics that distinguish TEs from genes, leading to the validation of 3,530 ETEs. The analysis of ETEs transcription patterns under different stress conditions showed a differential regulation triggered by treatments mimicking biotic and abiotic stress; furthermore, the distribution of functional domains of differentially regulated ETEs revealed a relevant presence of domains involved in many aspects of cellular functions. A comparative genomic investigation was performed including species representative of Asterids and appropriate outgroups: the bulk of ETEs resulted specific to the sunflower, while few ETEs presented orthologues in the genome of all analysed species, making the hypothesis of a conserved function. This study highlights the crucial role played by exaptation, actively contributing to species evolution.

Genome-wide identification and characterization of exapted transposable elements in the large genome of sunflower (Helianthus annuus L.)

Alberto Vangelisti;Gabriele Usai;Samuel Simoni;Andrea Cavallini;Tommaso Giordani;Lucia Natali;Flavia Mascagni
2022-01-01

Abstract

Transposable elements (TEs) are an important source of genome variability, playing many roles in the evolution of eukaryotic species. Besides well-known phenomena, TEs may undergo the exaptation process and generate the so-called exapted transposable element genes (ETEs). Here we present a genome-wide survey of ETEs in the large genome of sunflower (Helianthus annuus L.), in which the massive amount of TEs, provides a significant source for exaptation. A library of sunflower TEs was used to build TE-specific Hidden Markov Model profiles, to search for all available sunflower gene products. In doing so, 20,016 putative ETEs were identified and further investigated for the characteristics that distinguish TEs from genes, leading to the validation of 3,530 ETEs. The analysis of ETEs transcription patterns under different stress conditions showed a differential regulation triggered by treatments mimicking biotic and abiotic stress; furthermore, the distribution of functional domains of differentially regulated ETEs revealed a relevant presence of domains involved in many aspects of cellular functions. A comparative genomic investigation was performed including species representative of Asterids and appropriate outgroups: the bulk of ETEs resulted specific to the sunflower, while few ETEs presented orthologues in the genome of all analysed species, making the hypothesis of a conserved function. This study highlights the crucial role played by exaptation, actively contributing to species evolution.
2022
Ventimiglia, Maria; Marturano, Giovanni; Vangelisti, Alberto; Usai, Gabriele; Simoni, Samuel; Cavallini, Andrea; Giordani, Tommaso; Natali, Lucia; Zuccolo, Andrea; Mascagni, Flavia
File in questo prodotto:
File Dimensione Formato  
2022 Ventimiglia et al PJ preprint.pdf

Open Access dal 27/12/2023

Descrizione: post-prints dell'autore
Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.35 MB
Formato Adobe PDF
1.35 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1162374
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact