Background Relaxation methods determine residual stresses by measuring the deformations produced by incremental removal of a subdomain of the specimen. Measured strains at any given increment, determined by the cumulative effect of the relieved stresses, appear as an integral equation, which must be inverted to obtain residual stresses. In practice, stress distributions are discretized by a finite-dimensional basis, to transform the integral equations into a linear system of equations, which is often ill-conditioned. Objective This article demonstrates that the problem is actually ill-posed and comes with an inherent bias-variance tradeoff. Methods The hole drilling method is used as an example application, and the practical effects of ill-posedness are illustrated. Results Traditional regularization of the solution by limiting the resolution of the discretization reduces solution variance (noise) at the expense of increased bias and often results in the ultimately harmful practice of taking fewer data points. A careful analysis including the alternate Tikhonov regularization approach shows that the highest number of measurements should always be taken to reduce the variance for a given regularization scheme. Unfortunately, the variability of a regularized solution cannot be used to build a valid confidence interval, since an unknown bias term is always present in the true overall error. Conclusions The mathematical theory of ill-posed problems provides tools to manage the bias-variance tradeoff on a reasonable statistical basis, especially when the statistical properties of measurement errors are known. In the long run, physical arguments that provide constraints on the true solution would be of utmost importance, as they could regularize the problem without introducing an otherwise unknown bias. Constraining the minimum length scale to some physically meaningful value is one promising possibility.
Ill-Posedness and the Bias-Variance Tradeoff in Residual Stress Measurement Inverse Solutions
M. BeghiniPrimo
;T. Grossi
Secondo
;C. SantusUltimo
2023-01-01
Abstract
Background Relaxation methods determine residual stresses by measuring the deformations produced by incremental removal of a subdomain of the specimen. Measured strains at any given increment, determined by the cumulative effect of the relieved stresses, appear as an integral equation, which must be inverted to obtain residual stresses. In practice, stress distributions are discretized by a finite-dimensional basis, to transform the integral equations into a linear system of equations, which is often ill-conditioned. Objective This article demonstrates that the problem is actually ill-posed and comes with an inherent bias-variance tradeoff. Methods The hole drilling method is used as an example application, and the practical effects of ill-posedness are illustrated. Results Traditional regularization of the solution by limiting the resolution of the discretization reduces solution variance (noise) at the expense of increased bias and often results in the ultimately harmful practice of taking fewer data points. A careful analysis including the alternate Tikhonov regularization approach shows that the highest number of measurements should always be taken to reduce the variance for a given regularization scheme. Unfortunately, the variability of a regularized solution cannot be used to build a valid confidence interval, since an unknown bias term is always present in the true overall error. Conclusions The mathematical theory of ill-posed problems provides tools to manage the bias-variance tradeoff on a reasonable statistical basis, especially when the statistical properties of measurement errors are known. In the long run, physical arguments that provide constraints on the true solution would be of utmost importance, as they could regularize the problem without introducing an otherwise unknown bias. Constraining the minimum length scale to some physically meaningful value is one promising possibility.File | Dimensione | Formato | |
---|---|---|---|
Experimental Mechanics (2023) 63, 495-516.pdf
accesso aperto
Descrizione: Gold open access
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
4.58 MB
Formato
Adobe PDF
|
4.58 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.