Artificial Intelligence systems are increasingly playing an increasingly important role in our daily lives. As their importance in our everyday lives grows, it is fundamental that the internal mechanisms that guide these algorithms are as clear as possible. It is not by chance that the recent General Data Protection Regulation (GDPR) emphasized the users’ right to explanation when people face artificial intelligence-based technologies. Unfortunately, the current research tends to go in the opposite direction, since most of the approaches try to maximize the effectiveness of the models (e.g., recommendation accuracy) at the expense of the explainability and the transparency. The main research questions which arise from this scenario is straightforward: how can we deal with such a dichotomy between the need for effective adaptive systems and the right to transparency and interpretability? Several research lines are triggered by this question: building transparent intelligent systems, analyzing the impact of opaque algorithms on final users, studying the role of explanation strategies, investigating how to provide users with more control in the behavior of intelligent systems. XAI.it, the Italian workshop on Explainable AI, tries to address these research lines and aims to provide a forum for the Italian community to discuss problems, challenges and innovative approaches in the various sub-fields of XAI.
XAI.it 2022 - Preface to the Third Italian Workshop on Explainable Artificial Intelligence
Guidotti R.;Monreale A.;
2022-01-01
Abstract
Artificial Intelligence systems are increasingly playing an increasingly important role in our daily lives. As their importance in our everyday lives grows, it is fundamental that the internal mechanisms that guide these algorithms are as clear as possible. It is not by chance that the recent General Data Protection Regulation (GDPR) emphasized the users’ right to explanation when people face artificial intelligence-based technologies. Unfortunately, the current research tends to go in the opposite direction, since most of the approaches try to maximize the effectiveness of the models (e.g., recommendation accuracy) at the expense of the explainability and the transparency. The main research questions which arise from this scenario is straightforward: how can we deal with such a dichotomy between the need for effective adaptive systems and the right to transparency and interpretability? Several research lines are triggered by this question: building transparent intelligent systems, analyzing the impact of opaque algorithms on final users, studying the role of explanation strategies, investigating how to provide users with more control in the behavior of intelligent systems. XAI.it, the Italian workshop on Explainable AI, tries to address these research lines and aims to provide a forum for the Italian community to discuss problems, challenges and innovative approaches in the various sub-fields of XAI.File | Dimensione | Formato | |
---|---|---|---|
xpreface.pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
99.81 kB
Formato
Adobe PDF
|
99.81 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.