We propose quantum control protocols for the high-fidelity preparation of target states in systems with Autler-Townes splitting. We investigate an approximated three-level system obtained from a four-level one by adiabatically eliminating a state that does not participate in the evolution. In our work we use linear, arctan, and Roland-Cerf functions for transferring population between two eigenstates of the system obtaining a high fidelity for long evolution times. Additionally, in order to overcome the restriction given by the lifetimes of the experimental setup, we propose an accelerated adiabatic evolution with a shortcut to adiabaticity protocol, which allows us to reach fidelities close to one but much faster.
High-fidelity quantum control via Autler-Townes splitting
Kirova T.;Arimondo E.;Ciampini D.;Wimberger S.
2022-01-01
Abstract
We propose quantum control protocols for the high-fidelity preparation of target states in systems with Autler-Townes splitting. We investigate an approximated three-level system obtained from a four-level one by adiabatically eliminating a state that does not participate in the evolution. In our work we use linear, arctan, and Roland-Cerf functions for transferring population between two eigenstates of the system obtaining a high fidelity for long evolution times. Additionally, in order to overcome the restriction given by the lifetimes of the experimental setup, we propose an accelerated adiabatic evolution with a shortcut to adiabaticity protocol, which allows us to reach fidelities close to one but much faster.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.