We compute the weak lensing Jacobi map at first order in perturbation theory and show that it is both, gauge invariant and symmetric. Linear perturbations therefore do not induce any rotation. However, vector and tensor perturbations do induce B-modes in the shear. We show that contrary to what is often claimed in the literature, the shear B-mode power spectrum is not fully determined by the rotation power spectrum. Also the E-mode shear power spectrum is not determined by the convergence power spectrum. While this difference is small for scalar perturbations, it becomes very significant for tensor perturbations, i.e. gravitational waves.

The gauge invariant cosmological Jacobi map from weak lensing at leading order

Giuseppe Fanizza;Ruth Durrer;Giovanni Marozzi
2022-01-01

Abstract

We compute the weak lensing Jacobi map at first order in perturbation theory and show that it is both, gauge invariant and symmetric. Linear perturbations therefore do not induce any rotation. However, vector and tensor perturbations do induce B-modes in the shear. We show that contrary to what is often claimed in the literature, the shear B-mode power spectrum is not fully determined by the rotation power spectrum. Also the E-mode shear power spectrum is not determined by the convergence power spectrum. While this difference is small for scalar perturbations, it becomes very significant for tensor perturbations, i.e. gravitational waves.
2022
Fanizza, Giuseppe; Di Dio, Enea; Durrer, Ruth; Marozzi, Giovanni
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1165605
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact