Given a compact Riemannian manifold with umbilic boundary, the Yamabe boundary problem studies if there exist conformal scalar- at metrics such that the boundary of M has constant mean curvature. In this paper we address to the stability of this problem with respect of perturbation of mean curvature of the boundary and scalar curvature of the manifold. In particular we prove that the Yamabe boundary problem is stable under perturbation of the mean curvature and the scalar curvature from below, while it is not stable if one of the two curvatures is perturbed from above.

Compactness and blow up results for doubly perturbed Yamabe problems on manifolds with umbilic boundary

Ghimenti M. G.
;
Micheletti A. M.
2023-01-01

Abstract

Given a compact Riemannian manifold with umbilic boundary, the Yamabe boundary problem studies if there exist conformal scalar- at metrics such that the boundary of M has constant mean curvature. In this paper we address to the stability of this problem with respect of perturbation of mean curvature of the boundary and scalar curvature of the manifold. In particular we prove that the Yamabe boundary problem is stable under perturbation of the mean curvature and the scalar curvature from below, while it is not stable if one of the two curvatures is perturbed from above.
2023
Ghimenti, M. G.; Micheletti, A. M.
File in questo prodotto:
File Dimensione Formato  
doppia-per-umb.pdf

accesso aperto

Descrizione: preprint
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 524.67 kB
Formato Adobe PDF
524.67 kB Adobe PDF Visualizza/Apri
1-s2.0-S0362546X22002814-main.pdf

non disponibili

Descrizione: offprint
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 801.57 kB
Formato Adobe PDF
801.57 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1166968
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact