Laboratory specimens used to assess the interfacial fracture toughness of layered materials can be classified as either conventional or unconventional. We call conventional a specimen cut from a unidirectional composite laminate or an adhesive joint between two identical adherents. Assessing fracture toughness using conventional specimens is a common practice guided by international test standards. In contrast, we term unconventional a specimen resulting from, for instance, bimaterial joints, fiber metal laminates, or laminates with an elastically coupled behavior or residual stresses. This paper deals with unconventional specimens and highlights the key issues in determining their interfacial fracture toughness(es) based on fracture tests. Firstly, the mode decoupling and mode partitioning approaches are briefly discussed as tools to extract the pure-mode fracture toughnesses of an unconventional specimen that experiences mixed-mode fracture during testing. Next, we elaborate on the effects of bending-extension coupling and residual thermal stresses often appearing in unconventional specimens by reviewing major mechanical models that consider those effects. Lastly, the paper reviews two of our previous analytical models that surpass the state-of-the-art in that they consider the effects of bending-extension coupling and residual thermal stresses while they also offer mode partitioning.

Interfacial fracture toughness of unconventional specimens: some key issues

Fisicaro, Paolo
Writing – Review & Editing
;
Valvo, Paolo S.
Writing – Review & Editing
2023-01-01

Abstract

Laboratory specimens used to assess the interfacial fracture toughness of layered materials can be classified as either conventional or unconventional. We call conventional a specimen cut from a unidirectional composite laminate or an adhesive joint between two identical adherents. Assessing fracture toughness using conventional specimens is a common practice guided by international test standards. In contrast, we term unconventional a specimen resulting from, for instance, bimaterial joints, fiber metal laminates, or laminates with an elastically coupled behavior or residual stresses. This paper deals with unconventional specimens and highlights the key issues in determining their interfacial fracture toughness(es) based on fracture tests. Firstly, the mode decoupling and mode partitioning approaches are briefly discussed as tools to extract the pure-mode fracture toughnesses of an unconventional specimen that experiences mixed-mode fracture during testing. Next, we elaborate on the effects of bending-extension coupling and residual thermal stresses often appearing in unconventional specimens by reviewing major mechanical models that consider those effects. Lastly, the paper reviews two of our previous analytical models that surpass the state-of-the-art in that they consider the effects of bending-extension coupling and residual thermal stresses while they also offer mode partitioning.
2023
Tsokanas, Panayiotis; Fisicaro, Paolo; Loutas, Theodoros; Valvo, Paolo S.
File in questo prodotto:
File Dimensione Formato  
3361-Article Text-16114-2-10-20230209.pdf

accesso aperto

Descrizione: Published paper
Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 408.13 kB
Formato Adobe PDF
408.13 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1167790
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact