The Lagrangian approach is natural for studying issues of turbulent dispersion and mixing. We propose in this work a general Lagrangian stochastic model for inhomogeneous turbulent flows, using velocity and acceleration as dynamical variables. The model takes the form of a diffusion process, and the coefficients of the model are determined via Kolmogorov theory and the requirement of consistency with velocity-based models. We show that this model generalises both the acceleration-based models for homogeneous flows as well as velocity-based generalised Langevin models. The resulting closed model is applied to a channel flow at high Reynolds number, and compared to experiments as well as direct numerical simulations. A hybrid approach coupling the stochastic model with a Reynolds-averaged Navier-Stokes model is used to obtain a self-consistent model, as is commonly used in probability density function methods. Results highlight that most of the acceleration features are well represented, notably the anisotropy between streamwise and wall-normal components and the strong intermittency. These results are valuable, since the model improves on velocity-based models for boundary layers while remaining relatively simple. Our model also sheds some light on the statistical mechanisms at play in the near-wall region.
Lagrangian stochastic modelling of acceleration in turbulent wall-bounded flows
Innocenti, A.Primo
;
2020-01-01
Abstract
The Lagrangian approach is natural for studying issues of turbulent dispersion and mixing. We propose in this work a general Lagrangian stochastic model for inhomogeneous turbulent flows, using velocity and acceleration as dynamical variables. The model takes the form of a diffusion process, and the coefficients of the model are determined via Kolmogorov theory and the requirement of consistency with velocity-based models. We show that this model generalises both the acceleration-based models for homogeneous flows as well as velocity-based generalised Langevin models. The resulting closed model is applied to a channel flow at high Reynolds number, and compared to experiments as well as direct numerical simulations. A hybrid approach coupling the stochastic model with a Reynolds-averaged Navier-Stokes model is used to obtain a self-consistent model, as is commonly used in probability density function methods. Results highlight that most of the acceleration features are well represented, notably the anisotropy between streamwise and wall-normal components and the strong intermittency. These results are valuable, since the model improves on velocity-based models for boundary layers while remaining relatively simple. Our model also sheds some light on the statistical mechanisms at play in the near-wall region.File | Dimensione | Formato | |
---|---|---|---|
paper-acc_jfm_fin.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
625.61 kB
Formato
Adobe PDF
|
625.61 kB | Adobe PDF | Visualizza/Apri |
lagrangian_stochastic_modelling_of_acceleration_in_turbulent_wallbounded_flows.pdf
non disponibili
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
463.61 kB
Formato
Adobe PDF
|
463.61 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.