Type 2 diabetes mellitus (T2DM) is a serious chronic disease with an alarmingly growing worldwide prevalence. Current treatment of T2DM mainly relies on drug combinations in order to control blood glucose levels and consequently prevent the onset of hyperglycaemia-related complications. The development of multiple-targeted drugs recently emerged as an attractive alternative to drug combinations for the treatment of complex diseases with multifactorial pathogenesis, such as T2DM. Protein tyrosine phosphatase 1B (PTP1B) and aldose reductase (AKR1B1) are two enzymes crucially involved in the development of T2DM and its chronic complications and, therefore, dual inhibitors targeted to both these enzymes could provide novel agents for the treatment of this complex pathological condition. In continuing our search for dual-targeted PTP1B/AKR1B1 inhibitors, we designed new (5-arylidene-4-oxo-2-thioxothiazolidin-3-yl)alkanoic acids. Among them, 3-(4-phenylbutoxy)benzylidene derivatives 6f and 7f, endowed with interesting inhibitory activity against both targets, proved to control specific cellular pathways implicated in the development of T2DM and related complications.

Designed multiple ligands for the treatment of type 2 diabetes mellitus and its complications: Discovery of (5-arylidene-4-oxo-2-thioxothiazolidin-3-yl)alkanoic acids active as novel dual-targeted PTP1B/AKR1B1 inhibitors

Balestri, Francesco;Moschini, Roberta;Del Corso, Antonella;
2023-01-01

Abstract

Type 2 diabetes mellitus (T2DM) is a serious chronic disease with an alarmingly growing worldwide prevalence. Current treatment of T2DM mainly relies on drug combinations in order to control blood glucose levels and consequently prevent the onset of hyperglycaemia-related complications. The development of multiple-targeted drugs recently emerged as an attractive alternative to drug combinations for the treatment of complex diseases with multifactorial pathogenesis, such as T2DM. Protein tyrosine phosphatase 1B (PTP1B) and aldose reductase (AKR1B1) are two enzymes crucially involved in the development of T2DM and its chronic complications and, therefore, dual inhibitors targeted to both these enzymes could provide novel agents for the treatment of this complex pathological condition. In continuing our search for dual-targeted PTP1B/AKR1B1 inhibitors, we designed new (5-arylidene-4-oxo-2-thioxothiazolidin-3-yl)alkanoic acids. Among them, 3-(4-phenylbutoxy)benzylidene derivatives 6f and 7f, endowed with interesting inhibitory activity against both targets, proved to control specific cellular pathways implicated in the development of T2DM and related complications.
2023
Maccari, Rosanna; Wolber, Gerhard; Genovese, Massimo; Sardelli, Gemma; Talagayev, Valerij; Balestri, Francesco; Luti, Simone; Santi, Alice; Moschini, ...espandi
File in questo prodotto:
File Dimensione Formato  
Designed multiple ligands.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 10.88 MB
Formato Adobe PDF
10.88 MB Adobe PDF Visualizza/Apri
Designed multiple ligands_compressed.pdf

accesso aperto

Descrizione: Versione compressa per invio Sito Docente
Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 985.92 kB
Formato Adobe PDF
985.92 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1172845
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact