Decoding motor intentions from non-invasive brain activity monitoring is one of the most challenging aspects in the Brain Computer Interface (BCI) field. This is especially true in online settings, where classification must be performed in real-time, contextually with the user’s movements. In this work, we use a topology-preserving input representation, which is fed to a novel combination of 3D-convolutional and recurrent deep neural networks, capable of performing multi-class continual classification of subjects’ movement intentions. Our model is able to achieve a higher accuracy than a related state-of-the-art model from literature, despite being trained in a much more restrictive setting and using only a simple form of input signal preprocessing. The results suggest that deep learning models are well suited for deployment in challenging real-time BCI applications such as movement intention recognition.

A deep classifier for upper-limbs motor anticipation tasks in an online BCI setting

Valenti A.;Bacciu D.;
2021-01-01

Abstract

Decoding motor intentions from non-invasive brain activity monitoring is one of the most challenging aspects in the Brain Computer Interface (BCI) field. This is especially true in online settings, where classification must be performed in real-time, contextually with the user’s movements. In this work, we use a topology-preserving input representation, which is fed to a novel combination of 3D-convolutional and recurrent deep neural networks, capable of performing multi-class continual classification of subjects’ movement intentions. Our model is able to achieve a higher accuracy than a related state-of-the-art model from literature, despite being trained in a much more restrictive setting and using only a simple form of input signal preprocessing. The results suggest that deep learning models are well suited for deployment in challenging real-time BCI applications such as movement intention recognition.
2021
Valenti, A.; Barsotti, M.; Bacciu, D.; Ascari, L.
File in questo prodotto:
File Dimensione Formato  
Bacciu_1176025.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 685.16 kB
Formato Adobe PDF
685.16 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1176025
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact