Two abelian varieties A1, A2 over a number field K are strongly iso-Kummerian if the torsion fields K(A1[d]) and K(A2[d]) coincide for all d >= 1. For all g >= 4 we construct geometrically simple, strongly iso-Kummerian g-dimensional abelian varieties over number fields that are not geometrically isogenous. We also discuss related examples and put significant constraints on any further iso-Kummerian pair.
Non-isogenous abelian varieties sharing the same division fields
Lombardo, D
2023-01-01
Abstract
Two abelian varieties A1, A2 over a number field K are strongly iso-Kummerian if the torsion fields K(A1[d]) and K(A2[d]) coincide for all d >= 1. For all g >= 4 we construct geometrically simple, strongly iso-Kummerian g-dimensional abelian varieties over number fields that are not geometrically isogenous. We also discuss related examples and put significant constraints on any further iso-Kummerian pair.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Varieties sharing the same division fields.pdf
non disponibili
Descrizione: Versione finale editoriale
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
402.71 kB
Formato
Adobe PDF
|
402.71 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
SameTorsionFields.pdf
accesso aperto
Descrizione: Versione finale
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
509.29 kB
Formato
Adobe PDF
|
509.29 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.