Two abelian varieties A1, A2 over a number field K are strongly iso-Kummerian if the torsion fields K(A1[d]) and K(A2[d]) coincide for all d >= 1. For all g >= 4 we construct geometrically simple, strongly iso-Kummerian g-dimensional abelian varieties over number fields that are not geometrically isogenous. We also discuss related examples and put significant constraints on any further iso-Kummerian pair.
NON-ISOGENOUS ABELIAN VARIETIES SHARING THE SAME DIVISION FIELDS
Lombardo, D
2023-01-01
Abstract
Two abelian varieties A1, A2 over a number field K are strongly iso-Kummerian if the torsion fields K(A1[d]) and K(A2[d]) coincide for all d >= 1. For all g >= 4 we construct geometrically simple, strongly iso-Kummerian g-dimensional abelian varieties over number fields that are not geometrically isogenous. We also discuss related examples and put significant constraints on any further iso-Kummerian pair.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.