We study local opers with two singularities for the case of the Lie algebra sl(2), and discuss their connection with a two-variables extension of the affine Lie algebra. We prove an analogue of the Feigin-Frenkel theorem describing the centre at the critical level, and an analogue of a result by Frenkel and Gaitsgory that characterises the endomorphism rings of Weyl modules in terms of functions on the space of opers.
Local Opers with Two Singularities: The Case of sl(2)
Lombardo, D;Maffei, A;
2022-01-01
Abstract
We study local opers with two singularities for the case of the Lie algebra sl(2), and discuss their connection with a two-variables extension of the affine Lie algebra. We prove an analogue of the Feigin-Frenkel theorem describing the centre at the critical level, and an analogue of a result by Frenkel and Gaitsgory that characterises the endomorphism rings of Weyl modules in terms of functions on the space of opers.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Local opers with two singularities.pdf
non disponibili
Descrizione: Versione editoriale
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
776.28 kB
Formato
Adobe PDF
|
776.28 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Op2_SL2.pdf
accesso aperto
Descrizione: Versione finale
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
614.78 kB
Formato
Adobe PDF
|
614.78 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.