We study local opers with two singularities for the case of the Lie algebra sl(2), and discuss their connection with a two-variables extension of the affine Lie algebra. We prove an analogue of the Feigin-Frenkel theorem describing the centre at the critical level, and an analogue of a result by Frenkel and Gaitsgory that characterises the endomorphism rings of Weyl modules in terms of functions on the space of opers.

Local Opers with Two Singularities: The Case of sl(2)

Lombardo, D;Maffei, A;
2022-01-01

Abstract

We study local opers with two singularities for the case of the Lie algebra sl(2), and discuss their connection with a two-variables extension of the affine Lie algebra. We prove an analogue of the Feigin-Frenkel theorem describing the centre at the critical level, and an analogue of a result by Frenkel and Gaitsgory that characterises the endomorphism rings of Weyl modules in terms of functions on the space of opers.
2022
Fortuna, G; Lombardo, D; Maffei, A; Melani, V
File in questo prodotto:
File Dimensione Formato  
Local opers with two singularities.pdf

non disponibili

Descrizione: Versione editoriale
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 776.28 kB
Formato Adobe PDF
776.28 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Op2_SL2.pdf

accesso aperto

Descrizione: Versione finale
Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 614.78 kB
Formato Adobe PDF
614.78 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1181147
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact