We study local opers with two singularities for the case of the Lie algebra sl(2), and discuss their connection with a two-variables extension of the affine Lie algebra. We prove an analogue of the Feigin-Frenkel theorem describing the centre at the critical level, and an analogue of a result by Frenkel and Gaitsgory that characterises the endomorphism rings of Weyl modules in terms of functions on the space of opers.
Local Opers with Two Singularities: The Case of sl(2)
Lombardo, D;Maffei, A;
2022-01-01
Abstract
We study local opers with two singularities for the case of the Lie algebra sl(2), and discuss their connection with a two-variables extension of the affine Lie algebra. We prove an analogue of the Feigin-Frenkel theorem describing the centre at the critical level, and an analogue of a result by Frenkel and Gaitsgory that characterises the endomorphism rings of Weyl modules in terms of functions on the space of opers.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.