Most of today’s operating nuclear plants that were originally designed for 30 or 40-year life are facing the long-term operation issues. Therefore, it is of meaningful importance to assess the time-dependent degradation and the aging of the relevant nuclear systems, structures, and components because of resulting loss of structural capacity. In this framework, the inverse method is implemented starting from temperatures at an accessible boundary, which are measured through a monitoring system. The reconstruction technique uses the elaborated signal provided by the monitoring system to determine temperature at inaccessible surface: this is the so-called inverse heat transfer problem. The inverse space marching method is applied. Analytical and numerical studies are performed taking into account thermal transient conditions in order to determine thermal loads. In particular, the developed code demonstrates to be able to reconstruct temperature and stress profiles in any section of the pipe with a good accuracy. In addition, the thermal loads obtained suggest that the investigated transient condition is not able to jeopardize the integrity of nuclear power plant, confirming the possibility of the plant extension of life.

Inverse Heat Conduction Problem in Estimating Nuclear Power Plant Piping Performance

Cancemi S. A.
Primo
Methodology
;
Lo Frano R.
Secondo
Conceptualization
2022-01-01

Abstract

Most of today’s operating nuclear plants that were originally designed for 30 or 40-year life are facing the long-term operation issues. Therefore, it is of meaningful importance to assess the time-dependent degradation and the aging of the relevant nuclear systems, structures, and components because of resulting loss of structural capacity. In this framework, the inverse method is implemented starting from temperatures at an accessible boundary, which are measured through a monitoring system. The reconstruction technique uses the elaborated signal provided by the monitoring system to determine temperature at inaccessible surface: this is the so-called inverse heat transfer problem. The inverse space marching method is applied. Analytical and numerical studies are performed taking into account thermal transient conditions in order to determine thermal loads. In particular, the developed code demonstrates to be able to reconstruct temperature and stress profiles in any section of the pipe with a good accuracy. In addition, the thermal loads obtained suggest that the investigated transient condition is not able to jeopardize the integrity of nuclear power plant, confirming the possibility of the plant extension of life.
2022
Cancemi, S. A.; Lo Frano, R.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1181767
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact