The development of novel aircraft concepts and propulsion technologies requires up-to-date physics-based methods and tools for conceptual aircraft design. In this context, a simulation model for the take-off manoeuvre is proposed in this article, to be employed in the conceptual design phase for aircraft whether of traditional or innovative configuration. The model is capable of evaluating the longitudinal dynamics, both translational and rotational, of the aircraft considered as a rigid body, and influenced by the aerodynamic effects introduced by the presence of the ground. The ground effect, indeed, induces variations in the aerodynamic forces depending on the distance and the attitude of the lifting surfaces from the ground, which may significantly influence the aeromechanical characteristics of the aircraft during the evolution of the take-off manoeuvre. The simulation model is based on the numerical solution of the equations of the dynamics of the rigid aircraft in the longitudinal plane and integrates a vortex lattice aerodynamic solver to evaluate the aerodynamic and aeromechanical characteristics of the aircraft considering the ground effect in each time-step. The proposed approach is configuration independent, as it can model the geometry, evaluate the aerodynamics, and simulate the dynamics of aircraft with any lifting architecture; furthermore, the simulation model is fast and flexible, making it effective for the conceptual phase of aircraft design. The paper proposes the description of the take-off manoeuvre of two aircraft with different airframes: one with a conventional tube-and-wing architecture and one with a box-wing lifting system. The results proposed highlight the potential of the simulation model to detect aeromechanic and dynamic differences during the development of the manoeuvre for different aircraft configurations, and to assess the significance of considering ground effect aerodynamics.

A Simulation Framework for Aircraft Take-Off Considering Ground Effect Aerodynamics in Conceptual Design

Abu Salem K.
Primo
Conceptualization
;
Chiarelli M. R.
Penultimo
Writing – Review & Editing
;
2023-01-01

Abstract

The development of novel aircraft concepts and propulsion technologies requires up-to-date physics-based methods and tools for conceptual aircraft design. In this context, a simulation model for the take-off manoeuvre is proposed in this article, to be employed in the conceptual design phase for aircraft whether of traditional or innovative configuration. The model is capable of evaluating the longitudinal dynamics, both translational and rotational, of the aircraft considered as a rigid body, and influenced by the aerodynamic effects introduced by the presence of the ground. The ground effect, indeed, induces variations in the aerodynamic forces depending on the distance and the attitude of the lifting surfaces from the ground, which may significantly influence the aeromechanical characteristics of the aircraft during the evolution of the take-off manoeuvre. The simulation model is based on the numerical solution of the equations of the dynamics of the rigid aircraft in the longitudinal plane and integrates a vortex lattice aerodynamic solver to evaluate the aerodynamic and aeromechanical characteristics of the aircraft considering the ground effect in each time-step. The proposed approach is configuration independent, as it can model the geometry, evaluate the aerodynamics, and simulate the dynamics of aircraft with any lifting architecture; furthermore, the simulation model is fast and flexible, making it effective for the conceptual phase of aircraft design. The paper proposes the description of the take-off manoeuvre of two aircraft with different airframes: one with a conventional tube-and-wing architecture and one with a box-wing lifting system. The results proposed highlight the potential of the simulation model to detect aeromechanic and dynamic differences during the development of the manoeuvre for different aircraft configurations, and to assess the significance of considering ground effect aerodynamics.
2023
Abu Salem, K.; Palaia, G.; Chiarelli, M. R.; Bianchi, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1183088
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 4
social impact