Robots designed to share an environment with humans, such as e.g. in domestic or entertainment applications or in cooperative material-handling tasks, must fulfill different requirements from those typically met in industry. It is often the case, for instance, that accuracy requirements are less demanding. On the other hand, concerns of paramount importance are safety and dependability of the robot system. According to such difference in requirements, it can be expected that usage of conventional industrial arms for anthropic environments will be far from optimal. An approach to increase the safety level of robot arms interacting with humans consists in the introduction of compliance at the mechanical design level. In this paper we discuss the problem of achieving good performances in accuracy and promptness with a robot manipulator under the condition that safety is guaranteed throughout whole task execution. Intuitively, while a rigid and powerful structure of the arm would favor its performance, lightweight compliant structures are more suitable for safe operation. The quantitative analysis of the resulting design trade-off between safety and performance has a strong impact on how robot mechanisms and controllers should be designed for humaninteractive applications. We discuss few different possible concepts for safely actuating joints, and focus on aspects related to the implementation of the mechanics and control of this new class of robots.

Physical Human-Robot Interaction: Dependability, Safety, and Performance

BICCHI, ANTONIO;GRIOLI, GIORGIO;
2008

Abstract

Robots designed to share an environment with humans, such as e.g. in domestic or entertainment applications or in cooperative material-handling tasks, must fulfill different requirements from those typically met in industry. It is often the case, for instance, that accuracy requirements are less demanding. On the other hand, concerns of paramount importance are safety and dependability of the robot system. According to such difference in requirements, it can be expected that usage of conventional industrial arms for anthropic environments will be far from optimal. An approach to increase the safety level of robot arms interacting with humans consists in the introduction of compliance at the mechanical design level. In this paper we discuss the problem of achieving good performances in accuracy and promptness with a robot manipulator under the condition that safety is guaranteed throughout whole task execution. Intuitively, while a rigid and powerful structure of the arm would favor its performance, lightweight compliant structures are more suitable for safe operation. The quantitative analysis of the resulting design trade-off between safety and performance has a strong impact on how robot mechanisms and controllers should be designed for humaninteractive applications. We discuss few different possible concepts for safely actuating joints, and focus on aspects related to the implementation of the mechanics and control of this new class of robots.
9781424417032
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/118524
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 41
social impact