Quantitative Susceptibility Mapping (QSM) can measure iron concentration increase in the primary motor cortex (M1) of patients with Amyotrophic Lateral Sclerosis (ALS). However, such alteration is confined to only specific regions interested by upper motor neuron pathology; therefore, mean QSM values in the entire M1 have limited diagnostic accuracy in discriminating between ALS patients and control subjects. This study investigates the diagnostic accuracy of a broader set of M1 QSM distribution indices in classifying ALS patients and controls. Mean, standard deviation, skewness and kurtosis of M1 QSM values were used either individually or as combined predictors in support vector machines. The classification performance was compared to that obtained by the radiological assessment of T2* signal hypo-intensity of M1 in susceptibility-weighted MRI. The least informative index for the classification of ALS patients and controls was the subject's mean QSM value in M1. The highest diagnostic performance was obtained when all the distribution indices of positive QSM values in M1 were considered, which yielded a diagnostic accuracy of 0.90, with sensitivity = 0.89 and specificity = 1. The radiological assessment of M1 yielded a diagnostic accuracy of 0.79, with sensitivity = 0.76 and specificity = 0.90. The joint evaluation of QSM distribution indices could support the clinical examination in ALS diagnosis and patient monitoring.
Distribution Indices of Magnetic Susceptibility Values in the Primary Motor Cortex Enable to Classify Patients with Amyotrophic Lateral Sclerosis
Donatelli, Graziella;Cecchi, Paolo;Migaleddu, Gianmichele;Siciliano, Gabriele;Cosottini, Mirco
2022-01-01
Abstract
Quantitative Susceptibility Mapping (QSM) can measure iron concentration increase in the primary motor cortex (M1) of patients with Amyotrophic Lateral Sclerosis (ALS). However, such alteration is confined to only specific regions interested by upper motor neuron pathology; therefore, mean QSM values in the entire M1 have limited diagnostic accuracy in discriminating between ALS patients and control subjects. This study investigates the diagnostic accuracy of a broader set of M1 QSM distribution indices in classifying ALS patients and controls. Mean, standard deviation, skewness and kurtosis of M1 QSM values were used either individually or as combined predictors in support vector machines. The classification performance was compared to that obtained by the radiological assessment of T2* signal hypo-intensity of M1 in susceptibility-weighted MRI. The least informative index for the classification of ALS patients and controls was the subject's mean QSM value in M1. The highest diagnostic performance was obtained when all the distribution indices of positive QSM values in M1 were considered, which yielded a diagnostic accuracy of 0.90, with sensitivity = 0.89 and specificity = 1. The radiological assessment of M1 yielded a diagnostic accuracy of 0.79, with sensitivity = 0.76 and specificity = 0.90. The joint evaluation of QSM distribution indices could support the clinical examination in ALS diagnosis and patient monitoring.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.