We consider the Gamma-limit of a family of functionals which model the interaction of a material that undergoes phase transition with a rapidly oscillating conservative vector field. These functionals consist of a gradient term, a double-well potential and a vector field. The scaling is such that all three terms scale in the same way and the frequency of the vector field is equal to the interface thickness. Difficulties arise from the fact that the two global minimizers of the functionals are nonconstant and converge only in the weak L-2-topology.

Gradient theory of phase transitions with a rapidly oscillating forcing term

NOVAGA, MATTEO
2008-01-01

Abstract

We consider the Gamma-limit of a family of functionals which model the interaction of a material that undergoes phase transition with a rapidly oscillating conservative vector field. These functionals consist of a gradient term, a double-well potential and a vector field. The scaling is such that all three terms scale in the same way and the frequency of the vector field is equal to the interface thickness. Difficulties arise from the fact that the two global minimizers of the functionals are nonconstant and converge only in the weak L-2-topology.
2008
Dirr, N; Lucia, M; Novaga, Matteo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/119245
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact