Typical additive manufacturing (AM) processes for producing metal and ceramic parts are highly energy-consuming and expensive to install and maintain. On the other hand, material extrusion AM (MEAM) technologies are conventionally used to produce polymeric parts but only marginally to process metallic materials. A feasible alternative is to process polymeric filaments loaded with metal particles. Debinding and sintering processes are then required to join the metal particles and obtain the final parts. In recent years, highly filled metal filaments consisting of a polymer loaded with a high concentration of metal powder have been commercialized for this purpose. In this study, the printability of a commercial CuSn12 filament was investigated by evaluating the influence of the process parameters on the density, shrinkage, porosity, and mechanical properties of the additively manufactured samples using a low-cost desktop 3D printer. Parameters such as the flow rate and ironing had the greatest influence on the density of the green samples. The correct selection of these parameters may reduce shrinkage after sintering. Furthermore, the obtained bronze had a notable ultimate tensile strength (mean value of 107 MPa), high stiffness (E values range from 38 to 50 GPa), and a greater elongation at break (mean value of 13%) than that of cast bronze of the same CuSn12 type. In this case, the extrusion pattern and ironing had the most significant influence on the final mechanical performance. The study provides insights into the use of highly filled bronze filaments combined with MEAM to produce functional parts for engineering applications.

Effect of printing parameters on extrusion-based additive manufacturing using highly filled CuSn12 filament

Aruanno B.;Paoli A.;Razionale A. V.;Tamburrino F.
2023-01-01

Abstract

Typical additive manufacturing (AM) processes for producing metal and ceramic parts are highly energy-consuming and expensive to install and maintain. On the other hand, material extrusion AM (MEAM) technologies are conventionally used to produce polymeric parts but only marginally to process metallic materials. A feasible alternative is to process polymeric filaments loaded with metal particles. Debinding and sintering processes are then required to join the metal particles and obtain the final parts. In recent years, highly filled metal filaments consisting of a polymer loaded with a high concentration of metal powder have been commercialized for this purpose. In this study, the printability of a commercial CuSn12 filament was investigated by evaluating the influence of the process parameters on the density, shrinkage, porosity, and mechanical properties of the additively manufactured samples using a low-cost desktop 3D printer. Parameters such as the flow rate and ironing had the greatest influence on the density of the green samples. The correct selection of these parameters may reduce shrinkage after sintering. Furthermore, the obtained bronze had a notable ultimate tensile strength (mean value of 107 MPa), high stiffness (E values range from 38 to 50 GPa), and a greater elongation at break (mean value of 13%) than that of cast bronze of the same CuSn12 type. In this case, the extrusion pattern and ironing had the most significant influence on the final mechanical performance. The study provides insights into the use of highly filled bronze filaments combined with MEAM to produce functional parts for engineering applications.
2023
Aruanno, B.; Paoli, A.; Razionale, A. V.; Tamburrino, F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1196247
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact