We analyse the f(R) gravity in the so-called Jordan frame, as implemented to the isotropic Universe dynamics. The goal of the present study is to show that according to recent data analyses of the supernovae Ia Pantheon sample, it is possible to account for an effective redshift dependence of the Hubble constant. This is achieved via the dynamics of a non-minimally coupled scalar field, as it emerges in the f(R) gravity. We face the question both from an analytical and purely numerical point of view, following the same technical paradigm. We arrive to establish that the expected decay of the Hubble constant with the redshift z is ensured by a form of the scalar field potential, which remains essentially constant for z ≲ 0.3, independently if this request is made a priori, as in the analytical approach, or obtained a posteriori, when the numerical procedure is addressed. Thus, we demonstrate that an f(R) dark energy model is able to account for an apparent variation of the Hubble constant due to the rescaling of the Einstein constant by the f(R) scalar mode.

f(R) gravity in the Jordan frame as a paradigm for the Hubble tension

Tiziano Schiavone;
2023-01-01

Abstract

We analyse the f(R) gravity in the so-called Jordan frame, as implemented to the isotropic Universe dynamics. The goal of the present study is to show that according to recent data analyses of the supernovae Ia Pantheon sample, it is possible to account for an effective redshift dependence of the Hubble constant. This is achieved via the dynamics of a non-minimally coupled scalar field, as it emerges in the f(R) gravity. We face the question both from an analytical and purely numerical point of view, following the same technical paradigm. We arrive to establish that the expected decay of the Hubble constant with the redshift z is ensured by a form of the scalar field potential, which remains essentially constant for z ≲ 0.3, independently if this request is made a priori, as in the analytical approach, or obtained a posteriori, when the numerical procedure is addressed. Thus, we demonstrate that an f(R) dark energy model is able to account for an apparent variation of the Hubble constant due to the rescaling of the Einstein constant by the f(R) scalar mode.
2023
Schiavone, Tiziano; Montani, Giovanni; Bombacigno, Flavio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1199847
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact