Calcineurin (CN) inhibitors are effective clinical immunosuppressants but leave patients vulnerable to potentially fatal fungal infections. This study tested the hypothesis that CN inhibition interferes with antifungal immune defenses mediated by monocytes. We showed that NFAT is expressed by human monocytes, and is activated by exposure to fungal ligands. We confirmed that NFAT translocation potently activated target gene transcription using a human monocytic reporter cell line. Inhibition of CN‐NFAT by cyclosporine A significantly reduced monocyte production of TNF‐α, IL‐10, and MCP‐1 proteins in response to pattern recognition receptor ligands as well as to Aspergillus fumigatus conidia. Moreover, we revealed that human monocytes express the antifungal protein pentraxin‐3 under control of NFAT. In conclusion, clinical CN inhibitors have the potential to interfere with the novel NFAT‐dependent pentraxin‐3 pathway as well as antifungal cytokine production in human monocytes, thereby impeding monocyte‐mediated defenses against fungal infection in immune‐suppressed patients.

Calcineurin inhibitors reduce NFAT‐dependent expression of antifungal pentraxin‐3 by human monocytes

Pompeiano A;
2019-01-01

Abstract

Calcineurin (CN) inhibitors are effective clinical immunosuppressants but leave patients vulnerable to potentially fatal fungal infections. This study tested the hypothesis that CN inhibition interferes with antifungal immune defenses mediated by monocytes. We showed that NFAT is expressed by human monocytes, and is activated by exposure to fungal ligands. We confirmed that NFAT translocation potently activated target gene transcription using a human monocytic reporter cell line. Inhibition of CN‐NFAT by cyclosporine A significantly reduced monocyte production of TNF‐α, IL‐10, and MCP‐1 proteins in response to pattern recognition receptor ligands as well as to Aspergillus fumigatus conidia. Moreover, we revealed that human monocytes express the antifungal protein pentraxin‐3 under control of NFAT. In conclusion, clinical CN inhibitors have the potential to interfere with the novel NFAT‐dependent pentraxin‐3 pathway as well as antifungal cytokine production in human monocytes, thereby impeding monocyte‐mediated defenses against fungal infection in immune‐suppressed patients.
2019
Bendíčková, ; F., Tidu; M., De Zuani; M., Hortová Kohoutková; Pompeiano, A; S., Bělášková; T., Zelante; And, J. Frič.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1201597
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact