We consider shape functionals obtained as minima on Sobolev spaces of classical integrals having smooth and convex densities, under mixed Dirichlet.Neumann boundary conditions. We propose a new approach for the computation of the second order shape derivative of such functionals, yielding a general existence and representation theorem. In particular, we consider the p-torsional rigidity functional for p ≥ 2.

A variational method for second order shape derivatives

Lucardesi I.
2016-01-01

Abstract

We consider shape functionals obtained as minima on Sobolev spaces of classical integrals having smooth and convex densities, under mixed Dirichlet.Neumann boundary conditions. We propose a new approach for the computation of the second order shape derivative of such functionals, yielding a general existence and representation theorem. In particular, we consider the p-torsional rigidity functional for p ≥ 2.
2016
Bouchitté, G.; Fragalà, I.; Lucardesi, I.
File in questo prodotto:
File Dimensione Formato  
bouchitté-et-al-2016-a-variational-method-for-second-order-shape-derivatives.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 339.91 kB
Formato Adobe PDF
339.91 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1210933
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 10
social impact