In this paper we address the following shape optimization problem: find the planar domain of least area, among the sets with prescribed constant width and inradius. In the literature, the problem is ascribed to Bonnesen, who proposed it in [3]. In the present work, we give a complete answer to the problem, providing an explicit characterization of optimal sets for every choice of width and inradius. These optimal sets are particular Reuleaux polygons.

Body of constant width with minimal area in a given annulus

Lucardesi I.
2021-01-01

Abstract

In this paper we address the following shape optimization problem: find the planar domain of least area, among the sets with prescribed constant width and inradius. In the literature, the problem is ascribed to Bonnesen, who proposed it in [3]. In the present work, we give a complete answer to the problem, providing an explicit characterization of optimal sets for every choice of width and inradius. These optimal sets are particular Reuleaux polygons.
2021
Henrot, A.; Lucardesi, I.
File in questo prodotto:
File Dimensione Formato  
JEP_2021__8__415_0.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1210944
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact