The Synchronized Single-hop Multiple Gateway (SHMG) is a framework recently proposed to support mobility into 6TiSCH, the standard network architecture defined for Industrial Internet of Things (IIoT) deployments. SHMG supports industrial applications with stringent requirements by adopting the Shared-Downstream Dedicated-Upstream (SD-DU) scheduling policy, which allocates to Mobile Nodes (MNs) a set of dedicated transmission opportunities for uplink data. Such allocation is performed on all the Border Routers (BRs) of the network without considering the location of MNs. Transmission opportunities are reserved also in BRs far from the current location of the MN, resulting in a waste of resources that limits the maximum number of nodes supported by the network. To overcome this problem, we propose a Location-Aware Scheduling Algorithm (LASA) that takes into account the position of MNs to build and maintain an efficient communication schedule. Specifically, LASA tries to prevent conflicts arising due to node mobility, in a preventive manner, so as to minimize packet dropping. We evaluate LASA via simulation experiments. Our results show that LASA allows to increase the number of MNs by more than four times, with respect to SD-DU, yet guaranteeing a Packet Delivery Ratio higher than 98%.

LASA: Location-Aware Scheduling Algorithm in Industrial IoT Networks with Mobile Nodes

Pettorali, M
;
Righetti, F;Vallati, C;Anastasi, G
2023-01-01

Abstract

The Synchronized Single-hop Multiple Gateway (SHMG) is a framework recently proposed to support mobility into 6TiSCH, the standard network architecture defined for Industrial Internet of Things (IIoT) deployments. SHMG supports industrial applications with stringent requirements by adopting the Shared-Downstream Dedicated-Upstream (SD-DU) scheduling policy, which allocates to Mobile Nodes (MNs) a set of dedicated transmission opportunities for uplink data. Such allocation is performed on all the Border Routers (BRs) of the network without considering the location of MNs. Transmission opportunities are reserved also in BRs far from the current location of the MN, resulting in a waste of resources that limits the maximum number of nodes supported by the network. To overcome this problem, we propose a Location-Aware Scheduling Algorithm (LASA) that takes into account the position of MNs to build and maintain an efficient communication schedule. Specifically, LASA tries to prevent conflicts arising due to node mobility, in a preventive manner, so as to minimize packet dropping. We evaluate LASA via simulation experiments. Our results show that LASA allows to increase the number of MNs by more than four times, with respect to SD-DU, yet guaranteeing a Packet Delivery Ratio higher than 98%.
2023
979-8-3503-3165-3
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1214689
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact