A key issue in critical contexts such as medical diagnosis is the interpretability of the deep learning models adopted in decision-making systems. Research in eXplainable Artificial Intelligence (XAI) is trying to solve this issue. However, often XAI approaches are only tested on generalist classifier and do not represent realistic problems such as those of medical diagnosis. In this paper, we aim at improving the trust and confidence of users towards automatic AI decision systems in the field of medical skin lesion diagnosis by customizing an existing XAI approach for explaining an AI model able to recognize different types of skin lesions. The explanation is generated through the use of synthetic exemplar and counter-exemplar images of skin lesions and our contribution offers the practitioner a way to highlight the crucial traits responsible for the classification decision. A validation survey with domain experts, beginners, and unskilled people shows that the use of explanations improves trust and confidence in the automatic decision system. Also, an analysis of the latent space adopted by the explainer unveils that some of the most frequent skin lesion classes are distinctly separated. This phenomenon may stem from the intrinsic characteristics of each class and may help resolve common misclassifications made by human experts.
Improving trust and confidence in medical skin lesion diagnosis through explainable deep learning
Beretta, A;Guidotti, R;Rinzivillo, S;
2023-01-01
Abstract
A key issue in critical contexts such as medical diagnosis is the interpretability of the deep learning models adopted in decision-making systems. Research in eXplainable Artificial Intelligence (XAI) is trying to solve this issue. However, often XAI approaches are only tested on generalist classifier and do not represent realistic problems such as those of medical diagnosis. In this paper, we aim at improving the trust and confidence of users towards automatic AI decision systems in the field of medical skin lesion diagnosis by customizing an existing XAI approach for explaining an AI model able to recognize different types of skin lesions. The explanation is generated through the use of synthetic exemplar and counter-exemplar images of skin lesions and our contribution offers the practitioner a way to highlight the crucial traits responsible for the classification decision. A validation survey with domain experts, beginners, and unskilled people shows that the use of explanations improves trust and confidence in the automatic decision system. Also, an analysis of the latent space adopted by the explainer unveils that some of the most frequent skin lesion classes are distinctly separated. This phenomenon may stem from the intrinsic characteristics of each class and may help resolve common misclassifications made by human experts.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.