Functional Near Infrared Spectroscopy (fNIRS) is a useful tool for measuring hemoglobin concentration. Linear theory of the hemodynamic response function supports low frequency analysis (<0.2 Hz). However, we hypothesized that nonlinearities, arising from the complex neurovascular interactions sustaining vasomotor tone, may be revealed in higher frequency components of fNIRS signals. To test this hypothesis, we simulated nonlinear hemodynamic models to explore how blood flow autoregulation changes may alter evoked neurovascular signals in high frequencies. Next, we analyzed experimental fNIRS data to compare neural representations between fast (0.2–0.6 Hz) and slow (<0.2 Hz) waves, demonstrating that only nonlinear representations quantified by sample entropy are distinct between these frequency bands. Finally, we performed group-level distance correlation analysis to show that the cortical distribution of activity is independent only in the nonlinear analysis of fast and slow waves. Our study highlights the importance of analyzing nonlinear higher frequency effects seen in fNIRS for a comprehensive analysis of cortical neurovascular activity. Furthermore, it motivates further exploration of the nonlinear dynamics driving regional blood flow and hemoglobin concentrations

Nonlinear neural patterns are revealed in high frequency functional near infrared spectroscopy analysis

Valenza G.
2023-01-01

Abstract

Functional Near Infrared Spectroscopy (fNIRS) is a useful tool for measuring hemoglobin concentration. Linear theory of the hemodynamic response function supports low frequency analysis (<0.2 Hz). However, we hypothesized that nonlinearities, arising from the complex neurovascular interactions sustaining vasomotor tone, may be revealed in higher frequency components of fNIRS signals. To test this hypothesis, we simulated nonlinear hemodynamic models to explore how blood flow autoregulation changes may alter evoked neurovascular signals in high frequencies. Next, we analyzed experimental fNIRS data to compare neural representations between fast (0.2–0.6 Hz) and slow (<0.2 Hz) waves, demonstrating that only nonlinear representations quantified by sample entropy are distinct between these frequency bands. Finally, we performed group-level distance correlation analysis to show that the cortical distribution of activity is independent only in the nonlinear analysis of fast and slow waves. Our study highlights the importance of analyzing nonlinear higher frequency effects seen in fNIRS for a comprehensive analysis of cortical neurovascular activity. Furthermore, it motivates further exploration of the nonlinear dynamics driving regional blood flow and hemoglobin concentrations
2023
Ghouse, A.; Candia-Rivera, D.; Valenza, G.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0361923023001843-main.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 3.76 MB
Formato Adobe PDF
3.76 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1215399
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact