This paper deals with the problem of estimating the parameters of heavy-tailed sea clutter in high-resolution radar, when the clutter is modeled by the correlated Pareto type II distribution. Existing estimators based on the maximum likelihood (ML) approach, integer-order moments (IOM) approach, fractional-order moments (FOM), and log-moments (log-MoM) have shown to be sensitive to changes in data correlation. In this work, we resort to a deep learning (DL) approach based on a multi-headed architecture to overcome this problem. Offline training of the artificial neural networks (ANN) is carried out by using several combinations of the clutter parameters, with different correlation degrees. To assess the performance of the proposed estimator, we resort to Monte Carlo simulation, and we observed that it has superior performance over existing approaches in terms of estimation mean square error (MSE) and robustness to changes of the clutter correlation coefficient.

Multi-headed deep learning-based estimator for correlated-SIRV Pareto type II distributed clutter

Fulvio Gini;Maria Greco
Ultimo
Membro del Collaboration Group
2023-01-01

Abstract

This paper deals with the problem of estimating the parameters of heavy-tailed sea clutter in high-resolution radar, when the clutter is modeled by the correlated Pareto type II distribution. Existing estimators based on the maximum likelihood (ML) approach, integer-order moments (IOM) approach, fractional-order moments (FOM), and log-moments (log-MoM) have shown to be sensitive to changes in data correlation. In this work, we resort to a deep learning (DL) approach based on a multi-headed architecture to overcome this problem. Offline training of the artificial neural networks (ANN) is carried out by using several combinations of the clutter parameters, with different correlation degrees. To assess the performance of the proposed estimator, we resort to Monte Carlo simulation, and we observed that it has superior performance over existing approaches in terms of estimation mean square error (MSE) and robustness to changes of the clutter correlation coefficient.
2023
Mezache, A.; Hocine Kerbaa, Taha; Gini, Fulvio; Greco, Maria
File in questo prodotto:
File Dimensione Formato  
s13634-023-00982-8.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 2.66 MB
Formato Adobe PDF
2.66 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1216837
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact