In this paper we prove that among all convex domains of the plane with two axes of symmetry, the maximizer of the first non-trivial Neumann eigenvalue μ₁ with perimeter constraint is achieved by the square and the equilateral triangle. Part of the result follows from a new general bound on μ₁ involving the minimal width over the area. Our main result partially answers to a question addressed in 2009 by R. S. Laugesen, I. Polterovich, and B. A. Siudeja.

An isoperimetric problem with two distinct solutions

Lucardesi, Ilaria
2024-01-01

Abstract

In this paper we prove that among all convex domains of the plane with two axes of symmetry, the maximizer of the first non-trivial Neumann eigenvalue μ₁ with perimeter constraint is achieved by the square and the equilateral triangle. Part of the result follows from a new general bound on μ₁ involving the minimal width over the area. Our main result partially answers to a question addressed in 2009 by R. S. Laugesen, I. Polterovich, and B. A. Siudeja.
2024
Henrot, Antoine; Lemenant, Antoine; Lucardesi, Ilaria
File in questo prodotto:
File Dimensione Formato  
S0002-9947-2024-09074-8.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 856.29 kB
Formato Adobe PDF
856.29 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2210.17225v1.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 772.54 kB
Formato Adobe PDF
772.54 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1225568
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact