In this paper we prove that among all convex domains of the plane with two axes of symmetry, the maximizer of the first non-trivial Neumann eigenvalue μ₁ with perimeter constraint is achieved by the square and the equilateral triangle. Part of the result follows from a new general bound on μ₁ involving the minimal width over the area. Our main result partially answers to a question addressed in 2009 by R. S. Laugesen, I. Polterovich, and B. A. Siudeja.
An isoperimetric problem with two distinct solutions
Lucardesi, Ilaria
2024-01-01
Abstract
In this paper we prove that among all convex domains of the plane with two axes of symmetry, the maximizer of the first non-trivial Neumann eigenvalue μ₁ with perimeter constraint is achieved by the square and the equilateral triangle. Part of the result follows from a new general bound on μ₁ involving the minimal width over the area. Our main result partially answers to a question addressed in 2009 by R. S. Laugesen, I. Polterovich, and B. A. Siudeja.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
S0002-9947-2024-09074-8.pdf
non disponibili
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
856.29 kB
Formato
Adobe PDF
|
856.29 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2210.17225v1.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
772.54 kB
Formato
Adobe PDF
|
772.54 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.