We consider optimal transport problems where the cost for transporting a given probability measure $\mu_0$ to another one $\mu_1$ consists of two parts: the first one measures the transportation from $\mu_0$ to an intermediate (pivot) measure $\mu$ to be determined (and subject to various constraints), and the second one measures the transportation from $\mu$ to $\mu_1$. This leads to Monge-Kantorovich interpolation problems under constraints for which we establish various properties of the optimal pivot measures $\mu$. Considering the more general situation where only some part of the mass uses the intermediate stop leads to a mathematical model for the optimal location of a parking region around a city. Numerical simulations, based on entropic regularization, are presented both for the optimal parking regions and for Monge-Kantorovich constrained interpolation problems.

Wasserstein interpolation with constraints and application to a parking problem

GIUSEPPE BUTTAZZO;GUILLAUME CARLIER;
In corso di stampa

Abstract

We consider optimal transport problems where the cost for transporting a given probability measure $\mu_0$ to another one $\mu_1$ consists of two parts: the first one measures the transportation from $\mu_0$ to an intermediate (pivot) measure $\mu$ to be determined (and subject to various constraints), and the second one measures the transportation from $\mu$ to $\mu_1$. This leads to Monge-Kantorovich interpolation problems under constraints for which we establish various properties of the optimal pivot measures $\mu$. Considering the more general situation where only some part of the mass uses the intermediate stop leads to a mathematical model for the optimal location of a parking region around a city. Numerical simulations, based on entropic regularization, are presented both for the optimal parking regions and for Monge-Kantorovich constrained interpolation problems.
In corso di stampa
Buttazzo, Giuseppe; Carlier, Guillaume; Eichinger, Katharina
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1232635
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact