We consider the shape optimization problems for the quantities $\lambda(\Omega)T^q(\Omega)$, where $\Omega$ varies among open sets of $\R^d$ with a prescribed Lebesgue measure. While the characterization of the infimum is completely clear, the same does not happen for the maximization in the case $q>1$. We prove that for $q$ large enough a maximizing domain exists among quasi-open sets and that the ball is optimal among {\it nearly spherical domains}.

On a reverse Kohler-Jobin inequality.

Luca Briani;Giuseppe Buttazzo;Serena Guarino Lo Bianco
In corso di stampa

Abstract

We consider the shape optimization problems for the quantities $\lambda(\Omega)T^q(\Omega)$, where $\Omega$ varies among open sets of $\R^d$ with a prescribed Lebesgue measure. While the characterization of the infimum is completely clear, the same does not happen for the maximization in the case $q>1$. We prove that for $q$ large enough a maximizing domain exists among quasi-open sets and that the ball is optimal among {\it nearly spherical domains}.
In corso di stampa
Briani, Luca; Buttazzo, Giuseppe; GUARINO LO BIANCO, Serena
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1232637
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact