We introduce the Random Oscillators Network (RON), a physically-inspired recurrent model derived from a network of heterogeneous oscillators. Unlike traditional recurrent neural networks, RON keeps the connections between oscillators untrained by leveraging on smart random initialisations, leading to exceptional computational efficiency. A rigorous theoretical analysis finds the necessary and sufficient conditions for the stability of RON, highlighting the natural tendency of RON to lie at the edge of stability, a regime of configurations offering particularly powerful and expressive models. Through an extensive empirical evaluation on several benchmarks, we show four main advantages of RON. 1) RON shows excellent long-term memory and sequence classification ability, outperforming other randomised approaches. 2) RON outperforms fully-trained recurrent models and state-of-the-art randomised models in chaotic time series forecasting. 3) RON provides expressive internal representations even in a small parametrisation regime making it amenable to be deployed on low-powered devices and at the edge. 4) RON is up to two orders of magnitude faster than fully-trained models.
Random Oscillators Network for Time Series Processing
Andrea CeniCo-primo
;Andrea CossuCo-primo
;Cosimo Della Santina;Davide Bacciu;Claudio Gallicchio
2024-01-01
Abstract
We introduce the Random Oscillators Network (RON), a physically-inspired recurrent model derived from a network of heterogeneous oscillators. Unlike traditional recurrent neural networks, RON keeps the connections between oscillators untrained by leveraging on smart random initialisations, leading to exceptional computational efficiency. A rigorous theoretical analysis finds the necessary and sufficient conditions for the stability of RON, highlighting the natural tendency of RON to lie at the edge of stability, a regime of configurations offering particularly powerful and expressive models. Through an extensive empirical evaluation on several benchmarks, we show four main advantages of RON. 1) RON shows excellent long-term memory and sequence classification ability, outperforming other randomised approaches. 2) RON outperforms fully-trained recurrent models and state-of-the-art randomised models in chaotic time series forecasting. 3) RON provides expressive internal representations even in a small parametrisation regime making it amenable to be deployed on low-powered devices and at the edge. 4) RON is up to two orders of magnitude faster than fully-trained models.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.