We introduce the Random Oscillators Network (RON), a physically-inspired recurrent model derived from a network of heterogeneous oscillators. Unlike traditional recurrent neural networks, RON keeps the connections between oscillators untrained by leveraging on smart random initialisations, leading to exceptional computational efficiency. A rigorous theoretical analysis finds the necessary and sufficient conditions for the stability of RON, highlighting the natural tendency of RON to lie at the edge of stability, a regime of configurations offering particularly powerful and expressive models. Through an extensive empirical evaluation on several benchmarks, we show four main advantages of RON. 1) RON shows excellent long-term memory and sequence classification ability, outperforming other randomised approaches. 2) RON outperforms fully-trained recurrent models and state-of-the-art randomised models in chaotic time series forecasting. 3) RON provides expressive internal representations even in a small parametrisation regime making it amenable to be deployed on low-powered devices and at the edge. 4) RON is up to two orders of magnitude faster than fully-trained models.

Random Oscillators Network for Time Series Processing

Andrea Ceni
Co-primo
;
Andrea Cossu
Co-primo
;
Cosimo Della Santina;Davide Bacciu;Claudio Gallicchio
2024-01-01

Abstract

We introduce the Random Oscillators Network (RON), a physically-inspired recurrent model derived from a network of heterogeneous oscillators. Unlike traditional recurrent neural networks, RON keeps the connections between oscillators untrained by leveraging on smart random initialisations, leading to exceptional computational efficiency. A rigorous theoretical analysis finds the necessary and sufficient conditions for the stability of RON, highlighting the natural tendency of RON to lie at the edge of stability, a regime of configurations offering particularly powerful and expressive models. Through an extensive empirical evaluation on several benchmarks, we show four main advantages of RON. 1) RON shows excellent long-term memory and sequence classification ability, outperforming other randomised approaches. 2) RON outperforms fully-trained recurrent models and state-of-the-art randomised models in chaotic time series forecasting. 3) RON provides expressive internal representations even in a small parametrisation regime making it amenable to be deployed on low-powered devices and at the edge. 4) RON is up to two orders of magnitude faster than fully-trained models.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1234547
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact