The proliferation of Wi-Fi devices has led to the rise of privacy concerns related to MAC Address-based systems used for people tracking and localization across various applications, such as smart cities, intelligent transportation systems, and marketing. These systems have highlighted the necessity for mobile device manufacturers to implement Randomized And Changing MAC address (RCM) techniques as a countermeasure for device identification. In response to the challenges posed by diverse RCM implementations, the IEEE has taken steps to standardize RCM operations through the 802.11aq Task Group (TG). However, while RCM implementation addresses some concerns, it can disrupt services that span both Layer 2 and upper-layers, which were originally designed assuming static MAC addresses. To address these challenges, the IEEE has established the 802.11bh TG, focusing on defining new device identification methods, particularly for Layer 2 services that require pre-association identification. Simultaneously, the IETF launched the MAC Address Device Identification for Network and Application Services (MADINAS) Working Group to investigate the repercussions of RCM on upper-layer services, including the Dynamic Host Configuration Protocol (DHCP). Concurrently, derandomization techniques have emerged to counteract RCM defense mechanisms. The exploration of these techniques has suggested the need for a broader privacy enhancement framework for WLANs that goes beyond simple MAC address randomization. These findings have prompted the inception of the 802.11bi TG, which aims to compile an exhaustive list of potential privacy vulnerabilities and prerequisites for a more private IEEE 802.11 standard. In this context, this tutorial aims to provide insights into the motivations behind RCM, its implementation, and its evolution over the years. It elucidates the influence of RCM on network processes and services. Furthermore, the tutorial delves into the recent progress made within the domains of 802.11bh, 802.11bi, and MADINAS. It offers a thorough analysis of the initial work undertaken by these groups, along with an overview of the relevant research challenges. The tutorial objective is to inspire the research community to explore innovative approaches and solutions that contribute to the ongoing efforts to enhance WLAN privacy through standardization initiatives.

A Tutorial On Privacy, RCM and Its Implications in WLAN

Garroppo R. G.
;
2023-01-01

Abstract

The proliferation of Wi-Fi devices has led to the rise of privacy concerns related to MAC Address-based systems used for people tracking and localization across various applications, such as smart cities, intelligent transportation systems, and marketing. These systems have highlighted the necessity for mobile device manufacturers to implement Randomized And Changing MAC address (RCM) techniques as a countermeasure for device identification. In response to the challenges posed by diverse RCM implementations, the IEEE has taken steps to standardize RCM operations through the 802.11aq Task Group (TG). However, while RCM implementation addresses some concerns, it can disrupt services that span both Layer 2 and upper-layers, which were originally designed assuming static MAC addresses. To address these challenges, the IEEE has established the 802.11bh TG, focusing on defining new device identification methods, particularly for Layer 2 services that require pre-association identification. Simultaneously, the IETF launched the MAC Address Device Identification for Network and Application Services (MADINAS) Working Group to investigate the repercussions of RCM on upper-layer services, including the Dynamic Host Configuration Protocol (DHCP). Concurrently, derandomization techniques have emerged to counteract RCM defense mechanisms. The exploration of these techniques has suggested the need for a broader privacy enhancement framework for WLANs that goes beyond simple MAC address randomization. These findings have prompted the inception of the 802.11bi TG, which aims to compile an exhaustive list of potential privacy vulnerabilities and prerequisites for a more private IEEE 802.11 standard. In this context, this tutorial aims to provide insights into the motivations behind RCM, its implementation, and its evolution over the years. It elucidates the influence of RCM on network processes and services. Furthermore, the tutorial delves into the recent progress made within the domains of 802.11bh, 802.11bi, and MADINAS. It offers a thorough analysis of the initial work undertaken by these groups, along with an overview of the relevant research challenges. The tutorial objective is to inspire the research community to explore innovative approaches and solutions that contribute to the ongoing efforts to enhance WLAN privacy through standardization initiatives.
2023
Ficara, D.; Garroppo, R. G.; Henry, J.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1234787
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact