Multi-access Edge Computing (MEC) is an emerging technology that allows to reduce the service latency and traffic congestion and to enable cloud offloading and context awareness. MEC consists in deploying computing devices, called MEC Hosts (MEHs), close to the user. Given the mobility of the user, several problems rise. The first problem is to select a MEH to run the service requested by the user. Another problem is to select the path to steer the traffic from the user to the selected MEH. The paper jointly addresses these two problems. First, the paper proposes a procedure to create a graph that is able to capture both network-layer and application-layer performance. Then, the proposed graph is used to apply the Multi-objective Dijkstra Algorithm (MDA), a technique used for multi-objective optimization problems, in order to find solutions to the addressed problems by simultaneously considering different performance metrics and constraints. To evaluate the performance of MDA, the paper implements a testbed based on AdvantEDGE and Kubernetes to migrate a VideoLAN application between two MEHs. A controller has been realized to integrate MDA with the 5G-MEC system in the testbed. The results show that MDA is able to perform the migration with a limited impact on the network performance and user experience. The lack of migration would instead lead to a severe reduction of the user experience.

Joint multi-objective MEH selection and traffic path computation in 5G-MEC systems

Wadatkar P. V.;Garroppo R. G.;
2024-01-01

Abstract

Multi-access Edge Computing (MEC) is an emerging technology that allows to reduce the service latency and traffic congestion and to enable cloud offloading and context awareness. MEC consists in deploying computing devices, called MEC Hosts (MEHs), close to the user. Given the mobility of the user, several problems rise. The first problem is to select a MEH to run the service requested by the user. Another problem is to select the path to steer the traffic from the user to the selected MEH. The paper jointly addresses these two problems. First, the paper proposes a procedure to create a graph that is able to capture both network-layer and application-layer performance. Then, the proposed graph is used to apply the Multi-objective Dijkstra Algorithm (MDA), a technique used for multi-objective optimization problems, in order to find solutions to the addressed problems by simultaneously considering different performance metrics and constraints. To evaluate the performance of MDA, the paper implements a testbed based on AdvantEDGE and Kubernetes to migrate a VideoLAN application between two MEHs. A controller has been realized to integrate MDA with the 5G-MEC system in the testbed. The results show that MDA is able to perform the migration with a limited impact on the network performance and user experience. The lack of migration would instead lead to a severe reduction of the user experience.
2024
Wadatkar, P. V.; Garroppo, R. G.; Nencioni, G.; Volpi, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1234789
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact