Modulation of absorbance and emission is key for the design of chiral chromophores. Accessing a series of compounds absorbing and emitting (circularly polarized) light over a wide spectral window and often toward near-infrared is of practical value in (chir)optical applications. Herein, by late-stage functionalization on derivatives bridging triaryl methyl and helicene domains, we have achieved the regioselective triple introduction of para electron-donating or electron-withdrawing substituents. Extended tuning of electronic (e.g., E-1/2(red) -1.50 V -> -0.68 V) and optical (e.g., emission covering from 550 to 850 nm) properties is achieved for the cations and neutral radicals; the latter compounds being easily prepared by mono electron reductions under electrochemical or chemical conditions. While luminescence quantum yields can be increased up to 70% in the cationic series, strong Cotton effects are obtained for certain radicals at low energies (lambda(abs) similar to 700-900 nm) with g(abs) values above 10(-3). The open-shell electronic nature of the radicals was further characterized by electron paramagnetic resonance revealing an important spin density delocalization that contributes to their persistence
Triple para-Functionalized Cations and Neutral Radicals of Enantiopure Diaza[4]helicenes
Funaioli, Tiziana;Zinna, Francesco;Di Bari, Lorenzo;Pescitelli, GennaroPenultimo
;
2024-01-01
Abstract
Modulation of absorbance and emission is key for the design of chiral chromophores. Accessing a series of compounds absorbing and emitting (circularly polarized) light over a wide spectral window and often toward near-infrared is of practical value in (chir)optical applications. Herein, by late-stage functionalization on derivatives bridging triaryl methyl and helicene domains, we have achieved the regioselective triple introduction of para electron-donating or electron-withdrawing substituents. Extended tuning of electronic (e.g., E-1/2(red) -1.50 V -> -0.68 V) and optical (e.g., emission covering from 550 to 850 nm) properties is achieved for the cations and neutral radicals; the latter compounds being easily prepared by mono electron reductions under electrochemical or chemical conditions. While luminescence quantum yields can be increased up to 70% in the cationic series, strong Cotton effects are obtained for certain radicals at low energies (lambda(abs) similar to 700-900 nm) with g(abs) values above 10(-3). The open-shell electronic nature of the radicals was further characterized by electron paramagnetic resonance revealing an important spin density delocalization that contributes to their persistenceI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.