In the infinite dimensional Heisenberg group, we construct a left invariant weak Riemannian metric that gives a degenerate geodesic distance. The same construction yields a degenerate sub-Riemannian distance. We show how the standard notion of sectional curvature adapts to our framework, but it cannot be defined everywhere and it is unbounded on suitable sequences of planes. The vanishing of the distance precisely occurs along this sequence of planes, so that the degenerate Riemannian distance appears in connection with an unbounded sectional curvature. In the 2005 paper by Michor and Mumford, this phenomenon was first observed in some specific Fréchet manifolds.

On the Michor–Mumford phenomenon in the infinite dimensional Heisenberg group

Valentino Magnani
;
2023-01-01

Abstract

In the infinite dimensional Heisenberg group, we construct a left invariant weak Riemannian metric that gives a degenerate geodesic distance. The same construction yields a degenerate sub-Riemannian distance. We show how the standard notion of sectional curvature adapts to our framework, but it cannot be defined everywhere and it is unbounded on suitable sequences of planes. The vanishing of the distance precisely occurs along this sequence of planes, so that the degenerate Riemannian distance appears in connection with an unbounded sectional curvature. In the 2005 paper by Michor and Mumford, this phenomenon was first observed in some specific Fréchet manifolds.
2023
Magnani, Valentino; Tiberio, Daniele
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1236187
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact