The performance of bituminous materials is often evaluated using rheological properties measured within the linear viscoelastic region. If there is a univocal temperature dependence of all the relaxation times, data obtained in different operating conditions can be translated onto a logarithmic scale where they partially overlap and merge into a single master curve. This is the well-known time–temperature superposition principle that has been successfully applied for decades. However, the empirical natureofthemethodhasledtomanydifferent procedures being used for the graphical construction of the master curve. In addition, the continuously increasing calculating power has led to new approaches, such as the simultaneous modelling of the represented viscoelastic function. Losing track of the basic statements of the method is the hidden drawback of this wide range of available protocols with the risk of artefacts and incongruences being introduced in the construction of the master curves. This review summarizes these basic statements together with the empirical and phenomenological approaches developed over the years. The aim of this study is to help the reader in choosing the most appropriate method to build the master curves. Although the subject of the review is of general applica tion, the field of bitumen is focused on.

Master curves construction for viscoelastic functions of bituminous materials

Giovanni Polacco;sara filippi
2024-01-01

Abstract

The performance of bituminous materials is often evaluated using rheological properties measured within the linear viscoelastic region. If there is a univocal temperature dependence of all the relaxation times, data obtained in different operating conditions can be translated onto a logarithmic scale where they partially overlap and merge into a single master curve. This is the well-known time–temperature superposition principle that has been successfully applied for decades. However, the empirical natureofthemethodhasledtomanydifferent procedures being used for the graphical construction of the master curve. In addition, the continuously increasing calculating power has led to new approaches, such as the simultaneous modelling of the represented viscoelastic function. Losing track of the basic statements of the method is the hidden drawback of this wide range of available protocols with the risk of artefacts and incongruences being introduced in the construction of the master curves. This review summarizes these basic statements together with the empirical and phenomenological approaches developed over the years. The aim of this study is to help the reader in choosing the most appropriate method to build the master curves. Although the subject of the review is of general applica tion, the field of bitumen is focused on.
2024
Polacco, Giovanni; Filippi, Sara
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1236367
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact