In extensional settings under Andersonian mechanics, low-angle normal faults should not form in favour of steeply dipping normal faults. However, InSAR shows that a seismic sequence including an earthquake with magnitude Mw 5.6 on August 1st, 2023 (NEIC - National Earthquake Information Center) at the northern end of the Afar rift was caused by normal faulting on a low-angle 35° dipping plane. Our best-fit InSAR model shows that the low-angle normal fault occurred on the west margin of the rift axis, it was relatively deep (6.7 km) and it slipped fully seismically, having a geodetic magnitude of Mw 5.66 in agreement with the global seismic recordings (NEIC). Temporally, the faulting occurred at the end of a one-year period (December 2022-December 2023) of increased seismicity in the northern sector of Afar, with swarms of seismicity migrating northward along the rift. The seismic characteristics, fault location and kinematics are consistent with the low-angle normal fault being triggered by fluids that locally could be released by a deep magmatic heat source along the rift axis under high extensional stresses. Our observations show that low-angle normal faults can form in rifting settings, are activated seismically and are likely fluid-induced.
Low-angle normal faulting triggered by fluids
Carolina Pagli
;Alessandro La Rosa;Martina Raggiunti;
2024-01-01
Abstract
In extensional settings under Andersonian mechanics, low-angle normal faults should not form in favour of steeply dipping normal faults. However, InSAR shows that a seismic sequence including an earthquake with magnitude Mw 5.6 on August 1st, 2023 (NEIC - National Earthquake Information Center) at the northern end of the Afar rift was caused by normal faulting on a low-angle 35° dipping plane. Our best-fit InSAR model shows that the low-angle normal fault occurred on the west margin of the rift axis, it was relatively deep (6.7 km) and it slipped fully seismically, having a geodetic magnitude of Mw 5.66 in agreement with the global seismic recordings (NEIC). Temporally, the faulting occurred at the end of a one-year period (December 2022-December 2023) of increased seismicity in the northern sector of Afar, with swarms of seismicity migrating northward along the rift. The seismic characteristics, fault location and kinematics are consistent with the low-angle normal fault being triggered by fluids that locally could be released by a deep magmatic heat source along the rift axis under high extensional stresses. Our observations show that low-angle normal faults can form in rifting settings, are activated seismically and are likely fluid-induced.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.