We study the theory of K-vector spaces with a predicate for the union X of an infinite family of independent subspaces. We show that if K is infinite then the theory is complete and admits quantifier elimination in the language of K-vector spaces with predicates for the n-fold sums of X with itself. If K is finite this is no longer true, but we still have that a natural completion is near-model-complete.

Vector spaces with a union of independent subspaces

Berarducci, Alessandro;Mamino, Marcello;Mennuni, Rosario
2024-01-01

Abstract

We study the theory of K-vector spaces with a predicate for the union X of an infinite family of independent subspaces. We show that if K is infinite then the theory is complete and admits quantifier elimination in the language of K-vector spaces with predicates for the n-fold sums of X with itself. If K is finite this is no longer true, but we still have that a natural completion is near-model-complete.
2024
Berarducci, Alessandro; Mamino, Marcello; Mennuni, Rosario
File in questo prodotto:
File Dimensione Formato  
s00153-024-00906-9.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 244.22 kB
Formato Adobe PDF
244.22 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1241607
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact