We consider the eigenvalue problem for the fractional Laplacian in a bounded domain with Dirichlet boundary condition. A recent result (see Fall et al., 2023) states that, under generic small perturbations of the coefficient of the equation or of the domain, all the eigenvalues are simple. In this paper we give a condition for which a perturbation of the coefficient or of the domain preserves the multiplicity of a given eigenvalue. Also, in the case of an eigenvalue of multiplicity 2 we prove that the set of perturbations of the coefficients which preserve the multiplicity is a smooth manifold of codimension 2 in C^1

A note on the persistence of multiplicity of eigenvalues of fractional Laplacian under perturbations

Marco Ghimenti
;
2024-01-01

Abstract

We consider the eigenvalue problem for the fractional Laplacian in a bounded domain with Dirichlet boundary condition. A recent result (see Fall et al., 2023) states that, under generic small perturbations of the coefficient of the equation or of the domain, all the eigenvalues are simple. In this paper we give a condition for which a perturbation of the coefficient or of the domain preserves the multiplicity of a given eigenvalue. Also, in the case of an eigenvalue of multiplicity 2 we prove that the set of perturbations of the coefficients which preserve the multiplicity is a smooth manifold of codimension 2 in C^1
2024
Ghimenti, Marco; Maria Micheletti, Anna; Pistoia, Angela
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0362546X24000774-main.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 484.52 kB
Formato Adobe PDF
484.52 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
persistence_ghim-mich-pist.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 283.42 kB
Formato Adobe PDF
283.42 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1244491
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact