The increased adoption of composite laminates in modern engineering requires advancement in the prediction of their dynamic behavior. Damping is a major design constraint in aerospace structures subjected to cyclic loads. While the effects caused by damping are well known, the mechanisms that cause it at the microscopic level are still unclear on a quantitative basis. Testing of these phenomena requires some difficulties to be overcome, like the contribution of spurious sources. The study focuses on the effects that the interphase has on the damping properties of carbon fiber-reinforced polymer (CFRP) composite structures. Three-phase models are employed to investigate the dependence of damping on the interphase mechanical properties, with a focus on the fiber-matrix interfacial shear strength. The experimental campaign confirms the attended results: in particular, a stronger interphase determines a lower damping of the structure.

ON THE EFFECTS OF THE INTERPHASE ON THE DAMPING OF CFRP STRUCTURES: AN EXPERIMENTAL INVESTIGATION

Mattia Gasenge
Writing – Original Draft Preparation
;
Paolo Sebastiano Valvo
Writing – Review & Editing
;
Laura Aliotta
Membro del Collaboration Group
;
Andrea Lazzeri
Supervision
2024-01-01

Abstract

The increased adoption of composite laminates in modern engineering requires advancement in the prediction of their dynamic behavior. Damping is a major design constraint in aerospace structures subjected to cyclic loads. While the effects caused by damping are well known, the mechanisms that cause it at the microscopic level are still unclear on a quantitative basis. Testing of these phenomena requires some difficulties to be overcome, like the contribution of spurious sources. The study focuses on the effects that the interphase has on the damping properties of carbon fiber-reinforced polymer (CFRP) composite structures. Three-phase models are employed to investigate the dependence of damping on the interphase mechanical properties, with a focus on the fiber-matrix interfacial shear strength. The experimental campaign confirms the attended results: in particular, a stronger interphase determines a lower damping of the structure.
2024
Gasenge, Mattia; Valvo, PAOLO SEBASTIANO; Aliotta, Laura; Lazzeri, Andrea
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1246827
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact