In this study, a deep learning-based approach is used to address inverse problems involving the inversion of a magnetic field and the identification of the relevant source, given the field data within a specific subdomain. Three different techniques are proposed: the first one is characterized by the use of a conditional variational autoencoder (CVAE) and a convolutional neural network (CNN); the second one employs the CVAE (its decoder, more specifically) and a fully connected deep artificial neural network; while the third one (mainly used as a comparison) uses a CNN directly operating on the available data without the use of the CVAE. These methods are applied to the magnetostatic problem outlined in the TEAM 35 benchmark problem, and a comparative analysis between them is conducted.
A Source Identification Problem in Magnetics Solved by Means of Deep Learning Methods
Sami Barmada;Nunzia Fontana;Mauro Tucci
2024-01-01
Abstract
In this study, a deep learning-based approach is used to address inverse problems involving the inversion of a magnetic field and the identification of the relevant source, given the field data within a specific subdomain. Three different techniques are proposed: the first one is characterized by the use of a conditional variational autoencoder (CVAE) and a convolutional neural network (CNN); the second one employs the CVAE (its decoder, more specifically) and a fully connected deep artificial neural network; while the third one (mainly used as a comparison) uses a CNN directly operating on the available data without the use of the CVAE. These methods are applied to the magnetostatic problem outlined in the TEAM 35 benchmark problem, and a comparative analysis between them is conducted.File | Dimensione | Formato | |
---|---|---|---|
mathematics-12-00859.pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
2.99 MB
Formato
Adobe PDF
|
2.99 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.