We consider an abstract linear wave equation with a time-dependent dissipation that decays at infinity with the so-called scale invariant rate, which represents the critical case. We do not assume that the coefficient of the dissipation term is smooth, and we investigate the effect of its oscillations on the decay rate of solutions. We prove a decay estimate that holds true regardless of the oscillations. Then we show that oscillations that are too fast have no effect on the decay rate, while oscillations that are in resonance with one of the frequencies of the elastic part can alter the decay rate. In the proof we first reduce ourselves to estimating the decay of solutions to a family of ordinary differential equations, then by using polar coordinates we obtain explicit formulae for the energy decay of these solutions, so that in the end the problem is reduced to the analysis of the asymptotic behavior of suitable oscillating integrals.
Resonance effects for linear wave equations with scale invariant oscillating damping
Marina Ghisi;Massimo Gobbino
2024-01-01
Abstract
We consider an abstract linear wave equation with a time-dependent dissipation that decays at infinity with the so-called scale invariant rate, which represents the critical case. We do not assume that the coefficient of the dissipation term is smooth, and we investigate the effect of its oscillations on the decay rate of solutions. We prove a decay estimate that holds true regardless of the oscillations. Then we show that oscillations that are too fast have no effect on the decay rate, while oscillations that are in resonance with one of the frequencies of the elastic part can alter the decay rate. In the proof we first reduce ourselves to estimating the decay of solutions to a family of ordinary differential equations, then by using polar coordinates we obtain explicit formulae for the energy decay of these solutions, so that in the end the problem is reduced to the analysis of the asymptotic behavior of suitable oscillating integrals.File | Dimensione | Formato | |
---|---|---|---|
2024-JDE.pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
413.19 kB
Formato
Adobe PDF
|
413.19 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.