Small-to-medium-sized wind turbines operate with wind speeds that are often modest, and it is therefore essential to exploit all possible means to concentrate the wind and thus increase the power extracted. The advantage that can be achieved by positioning the turbine on hilly reliefs, which act as natural diffusers, is well known, and some recent studies can be found on the effects of the characteristics of hilly terrain on the turbine performance. The literature shows numerous investigations on the behavior of ducted wind turbines, i.e., equipped with a diffuser. But so far, there is a lack of studies on the flow acceleration effects achievable by combining natural relief and a diffuser together. In this study, we analyze the performance of a 50 kW ducted turbine positioned on the top of hills of various shapes and slopes, with the aim of identifying the geometric characteristics of the diffuser most suitable for maximizing power extraction. The results show that a symmetrical convergent–divergent diffuser is well suited to exploit winds skewed by the slope of the hill, and therefore characterized by significant vertical velocity components. Due to its important convergent section, the diffuser is able to convey and realign the flow in the direction of the turbine axis. However, the thrust on the diffuser and therefore on the entire system increases dramatically, as does the turbulence released downwind.

The Ability of Convergent–Divergent Diffusers for Wind Turbines to Exploit Yawed Flows on Moderate-to-High-Slope Hills

Pucci, Micol;Zanforlin, Stefania
2024-01-01

Abstract

Small-to-medium-sized wind turbines operate with wind speeds that are often modest, and it is therefore essential to exploit all possible means to concentrate the wind and thus increase the power extracted. The advantage that can be achieved by positioning the turbine on hilly reliefs, which act as natural diffusers, is well known, and some recent studies can be found on the effects of the characteristics of hilly terrain on the turbine performance. The literature shows numerous investigations on the behavior of ducted wind turbines, i.e., equipped with a diffuser. But so far, there is a lack of studies on the flow acceleration effects achievable by combining natural relief and a diffuser together. In this study, we analyze the performance of a 50 kW ducted turbine positioned on the top of hills of various shapes and slopes, with the aim of identifying the geometric characteristics of the diffuser most suitable for maximizing power extraction. The results show that a symmetrical convergent–divergent diffuser is well suited to exploit winds skewed by the slope of the hill, and therefore characterized by significant vertical velocity components. Due to its important convergent section, the diffuser is able to convey and realign the flow in the direction of the turbine axis. However, the thrust on the diffuser and therefore on the entire system increases dramatically, as does the turbulence released downwind.
2024
Pucci, Micol; Zanforlin, Stefania
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1256350
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact