We construct a Poincaré map P_h for the positive horocycle flow on the modular surface PSL(2,Z)\H, and begin a systematic study of its dynamical properties. In particular, we give a complete characterisation of the periodic orbits of P_h, and show that they are equidistributed with respect to the invariant measure of P_h and can be organised in a tree by using the Stern-Brocot tree of rational numbers. In addition we introduce a time-reparameterisation of P_h which gives an insight into the dynamics of the non-periodic orbits.

A Poincaré map for the horocycle flow on PSL(2,Z)\H and the Stern-Brocot tree

Claudio Bonanno
;
Alessio Del Vigna;Stefano Isola
2024-01-01

Abstract

We construct a Poincaré map P_h for the positive horocycle flow on the modular surface PSL(2,Z)\H, and begin a systematic study of its dynamical properties. In particular, we give a complete characterisation of the periodic orbits of P_h, and show that they are equidistributed with respect to the invariant measure of P_h and can be organised in a tree by using the Stern-Brocot tree of rational numbers. In addition we introduce a time-reparameterisation of P_h which gives an insight into the dynamics of the non-periodic orbits.
2024
Bonanno, Claudio; DEL VIGNA, Alessio; Isola, Stefano
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1256532
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact