Automated industrial Visual Inspection Systems (VIS) are predominantly designed for specific use cases, resulting in constrained adaptability, high setup requirements, substantial capital investments, and significant knowledge barriers. This paper explores the business potential of recent alternative architectures proposed in the literature for the visual inspection of individual products or complex assemblies within highly variable production environments, utilizing next-generation VIS. These advanced VIS exhibit significant technical (hardware and software) enhancements, such as increased flexibility, reconfigurability, Computer Aided Design (CAD)-based integration, self-X capabilities, and autonomy, as well as economic improvements, including cost-effectiveness, non-invasiveness, and plug-and-produce capabilities. The new trends in VIS have the potential to revolutionize business models by enabling as-a-service approaches and facilitating a paradigm shift towards more sustainable manufacturing and human-centric practices. We extend the discussion to examine how these technological innovations, which reduce the need for extensive coding skills and lengthy reconfiguration activities for operators, can be implemented as a shared resource within a circular lifecycle. This analysis includes detailing the underlying business model that supports shared utilization among different stakeholders, promoting a circular economy in manufacturing by leveraging the capabilities of next-generation VIS. Such an approach not only enhances the sustainability of manufacturing processes but also democratizes access to state-of-the-art inspection technologies, thereby expanding the possibilities for autonomous manufacturing ecosystems.
Business Models Definition for Next-Generation Vision Inspection Systems
francesco lupi
Primo
;michele lanzettaUltimo
2024-01-01
Abstract
Automated industrial Visual Inspection Systems (VIS) are predominantly designed for specific use cases, resulting in constrained adaptability, high setup requirements, substantial capital investments, and significant knowledge barriers. This paper explores the business potential of recent alternative architectures proposed in the literature for the visual inspection of individual products or complex assemblies within highly variable production environments, utilizing next-generation VIS. These advanced VIS exhibit significant technical (hardware and software) enhancements, such as increased flexibility, reconfigurability, Computer Aided Design (CAD)-based integration, self-X capabilities, and autonomy, as well as economic improvements, including cost-effectiveness, non-invasiveness, and plug-and-produce capabilities. The new trends in VIS have the potential to revolutionize business models by enabling as-a-service approaches and facilitating a paradigm shift towards more sustainable manufacturing and human-centric practices. We extend the discussion to examine how these technological innovations, which reduce the need for extensive coding skills and lengthy reconfiguration activities for operators, can be implemented as a shared resource within a circular lifecycle. This analysis includes detailing the underlying business model that supports shared utilization among different stakeholders, promoting a circular economy in manufacturing by leveraging the capabilities of next-generation VIS. Such an approach not only enhances the sustainability of manufacturing processes but also democratizes access to state-of-the-art inspection technologies, thereby expanding the possibilities for autonomous manufacturing ecosystems.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.