We prove a generalization of the strong subadditivity of the von Neumann entropy for bosonic quantum Gaussian systems. Such generalization determines the minimum values of linear combinations of the entropies of subsystems associated to arbitrary linear functions of the quadratures, and holds for arbitrary quantum states including the scenario where the entropies are conditioned on a memory quantum system. We apply our result to prove new entropic uncertainty relations with quantum memory, a generalization of the quantum Entropy Power Inequality, and the linear time scaling of the entanglement entropy produced by quadratic Hamiltonians.

The generalized strong subadditivity of the von Neumann entropy for bosonic quantum systems

Giacomo De Palma
;
Dario Trevisan
2024-01-01

Abstract

We prove a generalization of the strong subadditivity of the von Neumann entropy for bosonic quantum Gaussian systems. Such generalization determines the minimum values of linear combinations of the entropies of subsystems associated to arbitrary linear functions of the quadratures, and holds for arbitrary quantum states including the scenario where the entropies are conditioned on a memory quantum system. We apply our result to prove new entropic uncertainty relations with quantum memory, a generalization of the quantum Entropy Power Inequality, and the linear time scaling of the entanglement entropy produced by quadratic Hamiltonians.
2024
De Palma, Giacomo; Trevisan, Dario
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1259487
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact