Given any deep fully connected neural network, initialized with random Gaussian parameters, we bound from above the quadratic Wasserstein distance between its output distribution and a suitable Gaussian process. Our explicit inequalities indicate how the hidden and output layers sizes affect the Gaussian behaviour of the network and quantitatively recover the distributional convergence results in the wide limit, i.e., if all the hidden layers sizes become large.

QUANTITATIVE GAUSSIAN APPROXIMATION OF RANDOMLY INITIALIZED DEEP NEURAL NETWORKS

Trevisan, D.
2022-01-01

Abstract

Given any deep fully connected neural network, initialized with random Gaussian parameters, we bound from above the quadratic Wasserstein distance between its output distribution and a suitable Gaussian process. Our explicit inequalities indicate how the hidden and output layers sizes affect the Gaussian behaviour of the network and quantitatively recover the distributional convergence results in the wide limit, i.e., if all the hidden layers sizes become large.
2022
Basteri, A.; Trevisan, D.
File in questo prodotto:
File Dimensione Formato  
s10994-024-06578-z.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 2.52 MB
Formato Adobe PDF
2.52 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1259527
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact