Decades of studies at divergent plate margins have revealed networks of magmatic sills at the crust-mantle boundary. However, a lack of direct observations of deep magma motion limits our understanding of magma inflow from the mantle into the lower crust and the mechanism of sill formation. Here, satellite geodesy reveals rift-scale deformation caused by magma inflow in the deep crust in the Afar rift (East Africa). Simultaneous inflation of four sills, laterally separated by 10s of km and at depths ranging 9-28 km, caused uplift across a similar to 100-km-wide zone, suggesting the sills are linked to a common mantle source. Our results show the supply of magma into the lower crust is temporally episodic, occurring across a network of sills. This process reflects inherent instability of melt migration through porous mantle flow and may be the fundamental process that builds the thick igneous crust beneath magmatic rifts and rifted margins globally.

Simultaneous rift-scale inflation of a deep crustal sill network in Afar, East Africa

La Rosa, A.;Pagli, C.;
2024-01-01

Abstract

Decades of studies at divergent plate margins have revealed networks of magmatic sills at the crust-mantle boundary. However, a lack of direct observations of deep magma motion limits our understanding of magma inflow from the mantle into the lower crust and the mechanism of sill formation. Here, satellite geodesy reveals rift-scale deformation caused by magma inflow in the deep crust in the Afar rift (East Africa). Simultaneous inflation of four sills, laterally separated by 10s of km and at depths ranging 9-28 km, caused uplift across a similar to 100-km-wide zone, suggesting the sills are linked to a common mantle source. Our results show the supply of magma into the lower crust is temporally episodic, occurring across a network of sills. This process reflects inherent instability of melt migration through porous mantle flow and may be the fundamental process that builds the thick igneous crust beneath magmatic rifts and rifted margins globally.
2024
La Rosa, A.; Pagli, C.; Wang, H.; Sigmundsson, F.; Pinel, V.; Keir, D.
File in questo prodotto:
File Dimensione Formato  
s41467-024-47136-4.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 2.05 MB
Formato Adobe PDF
2.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1269728
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact